Advertisement

Convergence Speed of an Integral Method for Computing the Essential Supremum

  • Jens Hichert
  • Armin Hoffmann
  • Hoàng Xuân Phú
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 18)

Abstract

We give an equivalence between the tasks of computing the essential supremum of a summable function and of finding a certain zero of a one-dimensional convex function. Interpreting the integral method as Newton-type method we show that in the case of objective functions with an essential supremum that is not spread the algorithm can work very slowly. For this reason we propose a method of accelerating the algorithm which is in some respect similar to the method of Aitken/Steffensen.

Key words

essential supremum convergence speed integral global optimization Newton algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archetti, F. and Betrò, B. (1975), Recursive Stochastic Evaluation of the Level Set Measure in the Global Optimization Problems, Technical Report, University of Pisa, Pisa, Italy.Google Scholar
  2. Chichinadze, V.K. (1967), Random Search to Determine the Extremum of the Function of Several Variables, Engeneering Cybernetics 1, 115–123.Google Scholar
  3. Caselton, W.F, and Yassien, H. A. (1994), LSP4, public domain software, available via ftp://ftp.ruhr-uni-bochum.de/mirrors/simtel.coast.net/SimTel/msdos/statistic/lsp4.zip.Google Scholar
  4. Chew S.H. and Zheng Q. (1988), Integral Global Optimization, Springer, Berlin, Heidelberg.zbMATHCrossRefGoogle Scholar
  5. De Biase, L. and Frontini, F. (1978), A Stochastic Method for Global Optimization: Its Structure and Numerical Performance, in: Dixon, L.C.W. and Szegö, G.P. (eds.) (1978), Towards Global Optimization 2, North-Holland, Amsterdam, 85–102.Google Scholar
  6. Dieudonné, J. (1975), Grundzüge der modernen Analysis, Band III, Deutscher Verlag der Wissenschaften, Berlin.Google Scholar
  7. Hiriart-Urruty, J.-B. and Lemaréchal, C. (1993), Convex Analysis and Minimization Algorithms I, Springer, Berlin, Heidelberg.Google Scholar
  8. Kosmol, P. (1993), Methoden zur numerischen Behandlung nichtlinearer Gleichungen und Optimierungsaufgaben, Teubner, Stuttgart.Google Scholar
  9. Kostreva, M.M. and Zheng Q. (1994), Integral Global Optimization Method for Solution of Nonlinear Complementarity Problems, Journal of Global Optimization 5, 181–193.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Natanson, I.P. (1975), Theorie der Funktionen einer reellen Veränderlichen, Akademie-Verlag, Berlin.zbMATHGoogle Scholar
  11. Phú, H.X. and Hoffmann, A. (1996), Essential Supremum and Supremum of Summable Functions, Numerical Functional Analysis and Optimization 17 (to appear).Google Scholar
  12. Stoer, J. (1994), Numerische Mathematik 1, Springer, Berlin, Heidelberg.zbMATHGoogle Scholar
  13. Zheng Q. (1992), Integral Global Optimization of Robust Discontinuous Functions, Dissertation, Graduate School of Clemson University, Clemson.Google Scholar
  14. Zheng Q. and Zhuang D. (1995), Integral Global Minimization: Algorithms, Implementations and Numerical Tests, Journal of Global Optimization 7, 421–454.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Jens Hichert
    • 1
  • Armin Hoffmann
    • 1
  • Hoàng Xuân Phú
    • 2
  1. 1.Institute of MathematicsTechnical University of IlmenauIlmenauGermany
  2. 2.Institute of MathematicsHanoiVietnam

Personalised recommendations