Vibrational Raman Optical Activity of Biomolecules

  • Laurence D. Barron
  • Lutz Hecht
  • Alasdair F. Bell
Chapter

Abstract

Traditionally, spectroscopic studies of chiral molecules have centered on electronic optical activity, usually measured as optical rotation or circular dichroism of visible and near-ultraviolet radiation. However, over the past two decades advances in optical and electronic technology have enabled optical activity measurements to be extended into the vibrational spectrum using both infrared and Raman techniques (Barron, 1982; Diem, 1993). It is now well established that vibrational optical activity opens up a whole new world of fundamental studies and practical applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amos, R. D., 1982, Electric and magnetic properties of CO, HF, HCI and CH3F, Chem. Phys. Lett. 87: 23–26.CrossRefGoogle Scholar
  2. Amos, R. D., and Rice, J. E., 1987, , The Cambridge Analytical Derivatives Package, Cambridge, Issue 4. 0.Google Scholar
  3. Andrews, D. L., 1980, Rayleigh and Raman optical activity: An analysis of the dependence on scattering angle, J. Chem. Phys. 72: 4141–4144.CrossRefGoogle Scholar
  4. Andrews, D. L., and Thirunamachandran, T., 1977a, A quantum electrodynamical theory of differential scattering based on a model with two chromophores. I. Differential Rayleigh scattering of circularly polarized light, Proc. R. Soc. London Ser. A 358: 297–310.Google Scholar
  5. Andrews, D. L., and Thirunamachandran, T., 1977b, A quantum electrodynamical theory of differential scattering based on a model with two chromophores. II. Differential Raman scattering of circularly polarized light, Proc. R. Soc. London Ser. A 358: 311–319.Google Scholar
  6. Arndt, E. R., and Stevens, E. S., 1993, Vacuum ultraviolet circular dichroism studies of simple saccharides, J. Am. Chem. Soc. 115: 7849–7853.CrossRefGoogle Scholar
  7. Atkins, P. W., and Barron, L. D., 1969, Rayleigh scattering of polarized photons by molecules, Mol. Phys. 16: 453–466.CrossRefGoogle Scholar
  8. Barron, L. D., 1978, Raman optical activity, in: Advances in Infrared and Raman Spectroscopy, Vol. 4 ( R. J. H. Clark and R. E. Hester, eds.), pp. 271–331, Heyden, London.Google Scholar
  9. Barron, L. D., 1982, Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge.Google Scholar
  10. Barron, L. D., and Buckingham, A. D., 1971, Rayleigh and Raman scattering from optically active molecules, Mol. Phys. 20: 1111–1119.CrossRefGoogle Scholar
  11. Barron, L. D., and Buckingham, A. D., 1974, A simple two-group model for Rayleigh and Raman optical activity, J. Am. Chem. Soc. 96: 4769–4773.CrossRefGoogle Scholar
  12. Barron, L. D., and Buckingham, A. D., 1975, Rayleigh and Raman optical activity, Annu. Rev. Phys. Chem. 26: 381–396.Google Scholar
  13. Barron, L. D., and Buckingham, A. D., 1979, The inertial contribution to vibrational optical activity in methyl torsion modes, J. Am. Chem. Soc. 101: 1979–1987.CrossRefGoogle Scholar
  14. Barron, L. D., and Escribano, J. R., 1985, Stokes—antiStokes asymmetry in natural Raman optical activity, Chem. Phys. 98: 437–446.CrossRefGoogle Scholar
  15. Barron, L. D., and Hecht, L., 1993, Biomolecular conformational studies with vibrational Raman optical activity, in: Advances in Spectroscopy, Vol. 21, Biomolecular Spectroscopy Part B ( R. J. H. Clark and R. E. Hester, eds.), pp. 235–266, Wiley, New York.Google Scholar
  16. Barron, L. D., and Hecht, L., 1994, Vibrational Raman optical activity: From fundamentals to biochemical applications, in: Circular Dichroism, Principles and Applications (K. Nakanishi, N. Berova, and R. W. Woody, eds.), pp. 179–215, VCH Publishers, New York.Google Scholar
  17. Barron, L. D., and Torrance, J. F., 1983, On the sign convention for Raman optical activity, Chem. Phys. Lett. 102: 285–286.CrossRefGoogle Scholar
  18. Barron, L. D., Bogaard, M. P., and Buckingham, A. D., 1973, Raman scattering of circularly polarized light by optically active molecules, J. Am. Chem. Soc. 95: 603–605.CrossRefGoogle Scholar
  19. Barron, L. D., Hecht, L., Gargaro, A. R., and Hug, W., 1990, Vibrational Raman optical activity in forward scattering: trans-pinane and ß-pinene, J. Raman Spectrosc. 2E: 375–379.CrossRefGoogle Scholar
  20. Barron, L. D., Gargaro, A. R., Hecht, L., and Polavarapu, P. L., 1991, Experimental and ab initio theoretical vibrational Raman optical activity of alanine, Spectrochim. Acta 47A: 1001–1016.CrossRefGoogle Scholar
  21. Barron, L. D., Gargaro, A. R., Hecht, L., and Polavarapu, P. L., 1992, Vibrational Raman optical activity of alanine as a function of pH, Spectrochim. Acta 48A: 261–263.CrossRefGoogle Scholar
  22. Barron, L. D., Ford, S. J., Bell, A. F., Wilson, G., Hecht, L., and Cooper, A., 1994, Vibrational Raman optical activity of biopolymers, Faraday Discuss. 99: 217–232.CrossRefGoogle Scholar
  23. Beintema, J. J., 1986, Do asparagine-linked carbohydrate chains in glycoproteins have a preference for [3–bends? Biosci. Rep. 6: 709–714.PubMedCrossRefGoogle Scholar
  24. Bell, A. F., 1994, Vibrational Raman Optical Activity of Carbohydrates, Doctoral thesis, Glasgow University.Google Scholar
  25. Bell, A. F., Hecht, L., and Barron, L. D., 1993, Low-wavenumber vibrational Raman optical activity of carbohydrates, J. Raman Spectrosc. 24: 633–635.CrossRefGoogle Scholar
  26. Bell, A. F., Barron, L. D., and Hecht, L., 1994a, Vibrational Raman optical activity study of D-glucose, Carbohydr. Res. 257: 11–24.CrossRefGoogle Scholar
  27. Bell, A. F., Hecht, L., and Barron, L. D., 1994b, Disaccharide solution stereochemistry from vibrational Raman optical activity, J. Am. Chem. Soc. 116: 5155–5161.CrossRefGoogle Scholar
  28. Bell, A. F., Ford, S. J., Hecht, L., Wilson, G., and Barron, L. D., 1994c, Vibrational Raman optical activity of glycoproteins, Int. J. Biol. Macromol. 16: 277–278.PubMedCrossRefGoogle Scholar
  29. Bell, A. F., Hecht, L., and Barron, L. D., 1995, Vibrational Raman optical activity of ketose monosaccharides, Spectrochim. Acta Part A 51A: 1367–1378.CrossRefGoogle Scholar
  30. Birke, S. S., Agbaje, I., and Diem, M., 1992, Experimental and computational infrared CD studies of prototypical peptide conformations, Biochemistry 31: 450–455.PubMedCrossRefGoogle Scholar
  31. Buckingham, A. D., 1967, Permanent and induced molecular moments and long-range intermolecular forces, Adv. Chem. Phys. 12: 107–142.CrossRefGoogle Scholar
  32. Buckingham, A. D., and Longuet-Higgins, H. C., 1968, The quadrupole moments of dipolar molecules, Mol. Phys. 14: 63–72.CrossRefGoogle Scholar
  33. Cael, J. J., Koenig, J. L., and Blackwell, J., 1975, Infrared and Raman spectroscopy of carbohydrates. Part VI: Normal coordinate analysis of V-amylose, Biopolymers 14: 1885–1903.CrossRefGoogle Scholar
  34. Carey, P. R., 1982, Biochemical Applications of Raman and Resonance Raman Spectroscopies, Academic Press, New York.Google Scholar
  35. Carter, D. C., and Ho, J. X., 1994, Structure of serum albumin, Adv. Protein Chem. 45: 153–203.PubMedCrossRefGoogle Scholar
  36. Che, D., and Nafie, L. A., 1993, Theory and reduction of artefacts in incident, scattered, and dual circular polarization forms of Raman optical activity, Appl. Spectrosc. 47: 544–555.CrossRefGoogle Scholar
  37. Craig, D. P., and Thirunamachandran, T., 1984, Molecular Quantum Electrodynamics, Academic Press, New York.Google Scholar
  38. Deslandes, Y., Marchessault, R. H., and Sarko, A., 1980, Triple-helical structure of (1 — 3)-3–D-glucan, Macromolecules 13: 1466–1471.CrossRefGoogle Scholar
  39. Diem, M., 1993, Modern Vibrational Spectroscopy, Wiley, New York.Google Scholar
  40. Diem, M., Lee, O., and Roberts, G. M., 1992, Vibrational studies, normal-coordinate analysis, and infrared VCD of alanylalanine in the amide III spectral region, J. Phys. Chem. 96: 548–554.CrossRefGoogle Scholar
  41. Dukor, R. K., and Keiderling, T. A., 1991, Reassessment of the random coil conformation: Vibrational CD study of proline oligopeptides and related polypeptides, Biopolymers 31: 1747–1761.PubMedCrossRefGoogle Scholar
  42. Escribano, J. R., and Barron, L. D., 1988, Valence optical theory of vibrational circular dichroism and Raman optical activity, Mol. Phys. 65: 327–344.Google Scholar
  43. Ford, S. J., Wen, Z. Q., Hecht, L., and Barron, L. D., 1994, Vibrational Raman optical of alanyl peptide oligomers: A new perspective on solution conformation, Biopolymers 34: 303–313.CrossRefGoogle Scholar
  44. Ford, S. J., Cooper, A., Hecht, L., Wilson, G., and Barron, L. D., 1995, Vibrational Raman optical activity of lysozyme: Hydrogen–deuterium exchange, unfolding and ligand binding, J. Chem. Soc. Faraday Trans. 9E 2087–2093.CrossRefGoogle Scholar
  45. Freedman, T. B., and Nafie, L. A., 1987, Stereochemical aspects of vibrational optical activity, Top. Stereochem. 17: 113–206.Google Scholar
  46. Gargaro, A. R., 1991, Studies on Natural Raman Optical Activity, Doctoral thesis, Glasgow University. Gargaro, A. R., Barron, L. D., and Hecht, L., 1993, Vibrational Raman optical activity of simple amino acids, J. Raman Spectrosc. 24: 91–96.Google Scholar
  47. Greenfield, N., and Fasman, G. D., 1969, Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry 8: 4108–4116.PubMedCrossRefGoogle Scholar
  48. Haynie, D. T., and Freire, E., 1993, Structural studies of the molten globule state, Protein Struct. Funct. Genet. 16: 115–140.CrossRefGoogle Scholar
  49. Hecht, L., and Barron, L. D., 1990, An analysis of modulation experiments for Raman optical activity, Appl. Spectrosc. 44: 483–491.CrossRefGoogle Scholar
  50. Hecht, L., and Barron, L. D., 1994, Instrument for natural and magnetic Raman optical activity studies in right-angle scattering, J. Raman Spectrosc. 25: 443–451.CrossRefGoogle Scholar
  51. Hecht, L., and Barron, L. D., 1994, Recent developments in Raman optical activity instrumentation, Faraday Discuss. 99: 35–47.CrossRefGoogle Scholar
  52. Hecht, L., and Nafie, L. A., 1991, Theory of natural Raman optical activity, part I. Complete circular polarization formalism, Mol. Phys. 72: 441–469.CrossRefGoogle Scholar
  53. Hecht, L., Barron, L. D., and Hug, W., 1989, Vibrational Raman optical activity in backscattering, Chem. Phys. Lett. 158: 341–348.CrossRefGoogle Scholar
  54. Hecht, L., Barron, L. D., Gargaro, A. R., Wen, Z. Q., and Hug, W., 1992a, Raman optical activity instrument for biochemical studies, J. Raman Spectrosc. 23: 401–411.CrossRefGoogle Scholar
  55. Hecht, L., Barron, L. D., Wen, Z. Q., and Ford, S. J., 1992b, Vibrational Raman optical activity of nucleosides and nucleotides, in: Proceedings of the Thirteenth International Conference on Raman Spectroscopy ( W. Kiefer, M., Cardona, G. Schaack, F. W. Schneider, and H. W. Schrotter, eds.), pp. 1098–1099, Wiley, New York.Google Scholar
  56. Helgaker, T., Ruud, K., Bak, K. L., Jorgensen, P., and Olsen, J., 1994, Vibrational Raman optical activity calculations using London atomic orbitals, Faraday Discuss. 99: 165–180.CrossRefGoogle Scholar
  57. Hills, B. P., Cano, C., and Belton, P. S., 1991, Proton NMR relaxation studies of aqueous polysaccharide systems, Macromolecules 24: 2944–2950.CrossRefGoogle Scholar
  58. Hug, W., 1982, Instrumental and theoretical advances in Raman optical activity, in: Raman Spectroscopy ( J. Lascombe and P. V. Huong, eds.), pp. 3–12, Wiley—Heyden, New York.Google Scholar
  59. Hug, W., 1994, Vibrational Raman optical activity comes of age, Chimia 48: 386–390.Google Scholar
  60. Hug, W., Kint, S., Bailey, G. F., and Scherer, J. R., 1975, Raman circular intensity differential spectroscopy. The spectra of (—)-a-pinene and (+)-a-phenylethylamine, J. Am. Chem. Soc. 97: 5589–5590.CrossRefGoogle Scholar
  61. Keiderling, T. A., and Pancoska, P., 1993, Structural studies of biological macromolecules using vibrational circular dichroism, in: Advances in Spectroscopy, Vol. 21, Biomolecular Spectroscopy Part B ( R. J. H. Clark and R. E. Hester, eds.), pp. 267–315, Wiley, New York.Google Scholar
  62. Keiderling, T. A., Wang, B., Urbanova, M., Pancoska, P., and Dukor, R. K., 1994, Empirical studies of protein secondary structure with vibrational circular dichroism and related techniques: a-lactalbumin and lysozyme as examples, Faraday Discuss. 99: 263–285.PubMedCrossRefGoogle Scholar
  63. Kirkwood, J. G., 1937, On the theory of optical rotatory power, J. Chem. Phys. 5: 479–491.CrossRefGoogle Scholar
  64. Krimm, S., and Bandekar, J., 1986, Vibrational spectroscopy and conformation of peptides, polypeptides and proteins, Adv. Protein Chem. 38: 181–364.PubMedCrossRefGoogle Scholar
  65. Lee, O., Roberts, G. M., and Diem, M., 1989, IR vibrational CD in alanyl tripeptide: Indication of a stable solution conformer, Biopolymers 28: 1759–1770.PubMedCrossRefGoogle Scholar
  66. Lightner, D. A., and Crist, B. V., 1979, Conformational analysis of (+)-(3R)-methylcyclohexanone fromGoogle Scholar
  67. temperature-dependent circular dichroism measurements, Appl. Spectrosc. 33:307–310.Google Scholar
  68. Lippert, J. L., Tyminski, D., and Desmeules, P. J., 1976, Determination of the secondary structure of proteins by laser Raman spectroscopy, J. Am. Chem. Soc. 98: 7075–7080.PubMedCrossRefGoogle Scholar
  69. McKenzie, H. A., and White, F. H., 1991, Lysozyme and a-lactalbumin: Structure, function, and interrelationships, Adv. Protein Chem. 41: 173–316.PubMedCrossRefGoogle Scholar
  70. Mathlouthi, M., and Koenig, J. L., 1986, Vibrational spectra of carbohydrates, Adv. Carbohydr. Chem. Biochem. 44: 7–89.CrossRefGoogle Scholar
  71. Miyazawa, T., Shimanouchi, T., and Mizushima, S. I., 1958, Normal vibrations of N-methylacetamide, J. Chem. Phys. 29: 611–616.Google Scholar
  72. Nafie, L. A., 1983, An alternative view on the sign convention for Raman optical activity, Chem. Phys. Lett. 102: 287–288.CrossRefGoogle Scholar
  73. Nafie, L. A., and Che, E., 1994, Theory and measurement of Raman optical activity, Adv. Chem. Phys. 85 (Part 3): 105–149.Google Scholar
  74. Nafie, L. A., and Freedman, T. B., 1989, Dual circular polarization Raman optical activity, Chem. Phys. Lett. 154: 260–266.CrossRefGoogle Scholar
  75. Nafie, L. A., and Zimba, C. G., 1987, Raman optical activity and related techniques, in: Biological Applications of Raman Spectroscopy (T. G. Spiro, ed.), pp. 307–343, Wiley, New York.Google Scholar
  76. Nafie, L. A., Yu, G.-S., Qu, X., and Freedman, T. B., 1994, Comparison of IR and Raman forms of vibrational optical activity, Faraday Discuss. 99: 13–34.PubMedCrossRefGoogle Scholar
  77. Paterlini, M. G., Freedman, T. B., and Nafie, L. A., 1976, Vibrational circular dichroism spectra of three conformationally distinct states and an unordered state of poly(L-lysine) in deuterated aqueous solution, Biopolymers 25: 1751–1756.CrossRefGoogle Scholar
  78. Pedersen, T. G., Sigurskjold, B. W., Andersen, K. V., Kjaer, M., Poulsen, F. M., Dobson, C. M., and Redfield, C., 1991, A nuclear magnetic resonance study of the hydrogen-exchange behaviour of lysozyme in crystals and solution, J. Mol. Biol. 218: 413–426.PubMedCrossRefGoogle Scholar
  79. Polavarapu, P. L., 1989, Vibrational optical activity, in: Vibrational Spectra and Structure, Vol. 17B (H. D. Bist, J. R. Durig, and J. F. Sullivan, eds.), pp. 319–342, Elsevier, Amsterdam. Polavarapu, P. L., 1990, Ab initio vibrational Raman and Raman optical activity spectra, J. Phys. Chem. 94: 8106–8112.Google Scholar
  80. Polavarapu, P. L., and Deng, Z., 1994, Structural determinations using vibrational Raman optical activity: From a single peptide group to 13–turns, Faraday Discuss. 99: 151–165.CrossRefGoogle Scholar
  81. Rupprecht, A., 1989, A matrix formalism for Raman optical activity (ROA) as applied to intensity sum rules, Acta Chem. Scand. 43: 207–208.CrossRefGoogle Scholar
  82. Saenger, W., 1984, Structural aspects of cyclodextrins and their inclusion complexes, in: Inclusion Compounds, Vol. 2 ( J. L. Atwood, J. E. D. Davies, and D. D. MacNicol, eds.), pp. 231–259, Academic Press, New York.Google Scholar
  83. Saito, H., Yokoi, M., and Yoshioka, Y., 1989, Effect of hydration on conformational change or stabilization of (1 -+ 3)-G3–o-glucans of various chain lengths in the solid state as studied by high-resolution solid-state 13C NMR spectroscopy, Macromolecules 22: 3892–3898.CrossRefGoogle Scholar
  84. Shi, Y., McClain, W. M., and Tian, D., 1991, Longwave properties of the orientation averaged Mueller scattering matrix for particles of arbitrary shape. II. Molecular parameters and Perrin symmetry, J. Chem. Phys. 94: 4726–4740.CrossRefGoogle Scholar
  85. Stephens, P. J., and Lowe, M. A., 1985, Vibrational circular dichroism, Annu. Rev. Phys. Chem. 36: 213–241.CrossRefGoogle Scholar
  86. Tiffany, M. L., and Krimm, S., 1968, New chain conformations of poly(glutamic acid) and polylysine, Biopolymers 6: 1379–1382.PubMedCrossRefGoogle Scholar
  87. Tu, A. T., 1986, Peptide backbone conformation and microenvironment of protein sidechains, in: Advances in Spectroscopy, Vol. 13, Spectroscopy of Biological Systems ( R. J. H. Clark and R. E. Hester, eds.), pp. 47–112, Wiley, New York.Google Scholar
  88. Urbanova, M., Dukor, R. K., Pancoska, P., Gupta, V. P., and Keiderling, T. A., 1991, Comparison of a-lactalbumin and lysozyme using vibrational circular dichroism. Evidence for a difference in crystal and solution structures, Biochemistry 30: 10479–10485.PubMedCrossRefGoogle Scholar
  89. Wen, Z. Q., 1992, Raman Optical Activity of Biological Molecules, Doctoral thesis, Glasgow University. Wen, Z. Q., Barron, L. D., and Hecht, L., 1993, Vibrational Raman optical activity of monosaccharides, J. Am. Chem. Soc. 115: 285–292.Google Scholar
  90. Wen, Z. Q., Hecht, L., and Barron, L. D., 1994a, a-Helix and associated loop signatures in vibrational Raman optical activity spectra of proteins, J. Am. Chem. Soc. 116: 443–445.Google Scholar
  91. Wen, Z. Q., Hecht, L., and Barron, L. D., 1994b, I3–Sheet and associated turn signatures in vibrational Raman optical activity spectra of proteins, Protein Sci. 3: 435–439.PubMedCrossRefGoogle Scholar
  92. Wilson, G., Ford, S. J., Cooper, A., Hecht, L., Wen, Z. Q., and Barron, L. D., 1995, Vibrational RamanGoogle Scholar
  93. optical activity of a-lactalbumin: Comparison with lysozyme and evidence for native tertiary folds in molten globule states, J. Mol. Biol. 254: 747–760.Google Scholar
  94. Wilson, G., Hecht, L., and Barron, L. D., 1996a, Raman optical activity of proteins in H2O and D2O, to be published.Google Scholar
  95. Wilson, G., Hecht, L., and Barron, L. D., 1996b, Vibrational Raman optical activity of model a-helical and random coil polypeptides, to be published.Google Scholar
  96. Woody, R. W., 1992, Circular dichroism and conformation of unordered polypeptides, Adv. Biophys. Chem. 2: 37–79.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Laurence D. Barron
    • 1
  • Lutz Hecht
    • 1
  • Alasdair F. Bell
    • 1
  1. 1.Chemistry DepartmentThe UniversityGlasgowUK

Personalised recommendations