“Visual Predation,” Habitat Structure, and the Ancestral Primate Niche

  • Robin Huw Crompton
Chapter

Abstract

Many of the characters of the basic suite of primate adaptations have at one time or the other been ascribed to arboreality. Frederick Wood Jones (1916) proposed that tree climbing lead to selection for a grasping forelimb, and Grafton Elliott Smith (1924) that grasping feet and hands were an adaptation for agility in a complex three-dimensional environment. Smith argued that these developments lead to replacement of the sense of smell by the senses of vision and touch, and consequent reduction of the snout. Collins (1921) and Le Gros Clarke (1959) noted a link between frontally-directed, convergent orbits and stereoscopic vision, which, Le Gros Clarke suggested, was advantageous for estimation of distances in arboreal leaping. But Cartmill (1972; 1974a & b; 1992) has challenged this “arboreal hypothesis” (Howells, 1947), indicating that the primate facility in arboreal movement per se could be matched, or even exceeded, by animals such as squirrels, with clawed, convergent digits, enhanced sense of smell, and laterally-facing orbits. He showed that clawed cheiridia actually offer locomotor advantages on large diameter vertical supports over clawless, grasping cheiridia (Cartmill, 1972a), and noted that “Despite their laterally directed eyes (and presumed lack of stereoscopy) squirrels of several genera may leap 13 to 17 body lengths from tree to tree, which compares favorably with the 20 body lengths reported for the saltatory lemuroid Propithecus verreauxi” (Cartmill, 1974b).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allman, J. (1977). Evolution of the Visual System in Primates. In J.M. Sprague and A.N. Epstein (Eds.), Progress in Psychobiology and Physiological Psychology 7. (pp. 1–53.) New York: Academic Press.Google Scholar
  2. Allman, J. & McGuinness, E. (1988) Visual Cortex in Primates. In H.D. Steklis & J. Erwin (Eds.,) Comparative Primate Biology 4: Neurosciences (pp. 279–326). New York: Alan Liss.Google Scholar
  3. BBC, The Natural World (1994, April) Vampires, Devilbirds and Spirits. Google Scholar
  4. Bennet-Clark, H.C. (1975) The energetics of the jump of the locust, Schistocerca gregaria. Journal of Experimental Biology, 47, 59–76.Google Scholar
  5. Bennet-Clark, H.C. (1977) Scale effects in Jumping Animals. In T.J. Pedley (Ed.): Scale Effects in Animal Locomotion (pp. 185–201.) London: Academic Press.Google Scholar
  6. Biewener, A., Alexander, R.McN. & Heglund, N.C. (1981). Elastic strain energy in the hopping of kangaroo rats. Journal of Zoology (London), 195, 369–383.CrossRefGoogle Scholar
  7. Bruun, B. (1972). The Hamlyn Guide to Birds of Britain and Europe. London: Hamlyn.Google Scholar
  8. Charles-Dominique, P. (1984). Ecology and Behavior of Nocturnal Primates. London: Duckworth.Google Scholar
  9. Cartmill, M. (1972). Arboreal adaptations and the origin of the order Primates. In R.H. Tuttle (Ed.) Functional and Evolutionary Biology of Primates (pp. 97–122). Chicago: Aldine-Atherton.Google Scholar
  10. Cartmill, M. (1974a). Pads and Claws in Arboreal Locomotion. In F.A. Jenkins, Jr. (Ed.) Primate Locomotion (pp. 45–83). New York: Academic Press.Google Scholar
  11. Cartmill, M. (1974b). Rethinking Primate Origins. Science, 184, 436–443.PubMedCrossRefGoogle Scholar
  12. Cartmill, M. (1992). New Views of Primate Origins. Evolutionary Anthropology 1 (3), 105–111.CrossRefGoogle Scholar
  13. Charles-Dominique, P. (1977). Ecology and Behavior of Nocturnal Primates. London: Duckworth.Google Scholar
  14. Charles-Dominique, P. & Martin, R.D. (1970). Evolution of lorises and lemurs. Nature, 227, 257–60.PubMedCrossRefGoogle Scholar
  15. Collins, E.T. (1921). Changes in the visual organs correlated with the adoption of arboreal life and with the assumption of the erect posture. Transactions of the Opthalmology Society, United Kingdom, 41, 10–90.Google Scholar
  16. Crompton, R.H. (1980). Galago locomotion. Doctoral dissertation, Harvard University, Cambridge, (United States of America). Ann Arbor: University Microfilms International.Google Scholar
  17. Crompton, R.H. (1983). Age Differences in Locomotion of 2 Subtropical Galaginae. Primates, 4(2), 241–259.CrossRefGoogle Scholar
  18. Crompton, R.H. (1984). Habitat Structure, Foraging and Locomotion in Two Species of Galago. In P. Rodman & J. Cant (Eds.) Adaptations for Foraging in Nonhuman Primates (pp.74–111). New York: Columbia University Press.Google Scholar
  19. Crompton, R.H. (1989). Mechanisms for Speciation in Galago and Tarsius. Human Evolution, 4 (2), 105–116.CrossRefGoogle Scholar
  20. Crompton, R.H. & Andau, P.M. (1986). Locomotion and Habitat Utilization in Free Ranging Tarsius bancanus: a preliminary report. Primates, 27 (3), 337–355.CrossRefGoogle Scholar
  21. Crompton, R.H. & Andau, P.M. (1987). Ranging, Activity Rhythms and Sociality in Free-Ranging Tarsius bancanus: a preliminary report. International Journal of Primatology 8, (1), 43–71.CrossRefGoogle Scholar
  22. Crompton, R.H., Oxnard, C.E. & Liebermann, S.S. (1987). Morphometrics and Niche Metrics in Prosimian Evolution 1: An Initial Approach to Measuring Locomotion, Habitat and Diet. A m erican Journal of Physical A nthropology, 73, 149–177.CrossRefGoogle Scholar
  23. Crompton, R.H., Sellers, W.I. & Günther, M.M. (1993). Energetic efficiency and ecology as selective factors in the saltatory adaptation of prosimian primates. Proceedings of the Royal Society, Series B, 254, 41–45.CrossRefGoogle Scholar
  24. Demes, B. & Günther M. M. (1989). Biomechanics and Allometric Scaling in Primate Locomotion and Morphology. Folia Primatologica, 53, 125–141.CrossRefGoogle Scholar
  25. Emerson, S.B. (1985). Jumping and Leaping. In M. Hildebrand, D.M. Bramble, K.F. Liem & D.B. Wake (Eds.) Functional Vertebrate Morphology. London: Belknap.Google Scholar
  26. Fedak, M.A., Heglund, N.C. & Taylor, C.R. (1982). Energetics,and Mechanics of Terrestrial Locomotion II. Journal of Experimental Biology, 79, 23–40.Google Scholar
  27. Fogden, M.P.L. (1974). A preliminary study of the western tarsier, Tarsius bancanus Horsfield. In R.D. Martin, G.A. Doyle & A. C. Walker (Eds.) Prosimian Biology pp.151–165. Pittsburgh: University of Pittsburgh Press.Google Scholar
  28. Garber, P. (1980). Locomotor behavior and feeding ecology of the Panamanian tamarin (Saguinus oedipus geoffroyi (Callithricidae, Primates). International Journal of Primatology, 1, 185–201.CrossRefGoogle Scholar
  29. Gebo, D.L. (1986). Anthropoid origins — the foot evidence. Journal of Human Evolution, 15 (6), 421–430.CrossRefGoogle Scholar
  30. Gebo, D.L. (1988). Foot Morphology and Locomotor Adaptation in Eocene Primates. Folia Primatologica, 50 (1), 3–41.CrossRefGoogle Scholar
  31. Groves, C.P. (1976). The origin of the mammalian fauna of Sulawesi (Celebes). Zeitschrift für Saügetierekunde, 41 (4), 201–206.Google Scholar
  32. Günther, M.M., Ishida, H., Kamakura, H. & Nakano, Y. (1991). The jump as a fast mode of locomotion in arboreal and terrestrial biotopes. Zeitschrift für Morphologie und Anthropologie, 78 (3) 341–372.PubMedGoogle Scholar
  33. Harvey, P.H. & Clutton-Brock, T.H. (1981). Primate Home Range Size and Metabolic Needs. Behavioral Ecology and Sociobiology, 8, 151–155.CrossRefGoogle Scholar
  34. Howells, W.W. (1947). Mankind so far. Garden City, New York: Doubleday.Google Scholar
  35. Hubel, D.H. & Wiesel, T.N. (1977). Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society, Series B, 198, 1–59.CrossRefGoogle Scholar
  36. Jablonski, N.G. & Crompton, R.H. (1994) Feeding Behavior, Mastication and Toothwear in the Western Tarsier, Tarsius bancanus. International Journal of Primatology, 15 (1), 1–31.CrossRefGoogle Scholar
  37. Jouffroy, F.-K., Berge, C. & Niemitz, C. (1984). Comparative study of the lower extremity in the genus Tarsius. In C. Niemitz, (Ed.) Biology of Tarsiers (pp. 168–190). Stuttgart: Gustav Fischer.Google Scholar
  38. Julesz, B. (1971). Foundations of Cyclopean Perception. Chicago: University of Chicago Press.Google Scholar
  39. Kay, R.F. (1984). On the use of anatomical features to infer foraging behavior in extinct primates. In P. Rodman & J. Cant (Eds.) A daptations for Foraging in Non-human Primates (pp. 22–53). New York: Columbia University Press.Google Scholar
  40. Kerr, A.W.S. & Forrester J.M. (1976). Visual and Auditory Systems. In R. Passmore and J.S. Robson (Eds.) A Companion to Medical Studies 1 (pp 26.1–26.32). Oxford: Blackwell.Google Scholar
  41. Le Gros Clarke, W.E. (1924) Notes on the living Tarsier. Proceedings of the Zoological Society, London, Part 1, 217.Google Scholar
  42. Le Gros Clarke, W.E. (1959). Antecedents of Man. Edinburgh: Edinburgh University Press.Google Scholar
  43. Lindstedt, S.L., Hokanson, J.F., Wells, D.J., Swain, S.D., Hoppeler, H. & Navarro, V. (1991). Running energetics in the pronghorn antelope. Nature, 353, 748–750.PubMedCrossRefGoogle Scholar
  44. Liu, L., Stevenson, S.B. & Schor C.M. (1994). Quantitative stereoscopic depth without binocular correspondence. Nature, 367, 66–69.PubMedCrossRefGoogle Scholar
  45. MacArthur, R.H. & Wilson, E.O. (1967). The Theory of Island Biogeography. Princeton, New Jersey: Princeton University Press.Google Scholar
  46. MacKinnon, J. & MacKinnon, K. (1980). The behavior of wild spectral tarsiers. International Journal of Primatology, 1, 361–379.CrossRefGoogle Scholar
  47. Martin, R.D. (1990). Primate Origins and Evolution. London: Chapman and Hall.Google Scholar
  48. Martin, R.D. (1972). Adaptive radiation and behavior of the Malagasy lemurs. Philosophical Transactions of the Royal Society, 264, 295–352.CrossRefGoogle Scholar
  49. Martin, R.D. (1993). Primate Origins: plugging the gaps. Nature, 363: 223–234.PubMedCrossRefGoogle Scholar
  50. McNab, B.K. & Wright P.C. (1987). Temperature regulation and oxygen consumption in the Phillippine Tarsier, Tarsius syrichta. Physiological Zoology, 60 (5), 596–600.Google Scholar
  51. Napier, J.R. (1963). Brachiation and Brachiators. Symposia of the Zoological Society of London, 10, 183–195.Google Scholar
  52. Napier, J.R. (1967). Evolutionary aspects of primate locomotion. American Journal of Physical Anthropology, 19, 337–389.Google Scholar
  53. Napier, J.R. & Walker, A.C. (1967). Vertical Clinging and Leaping — a newly recognized category of locomotor behavior of Primates. Folia Primatologica, 6, 204–219.CrossRefGoogle Scholar
  54. Niemitz, C. (1977). Zur Funktionsmorphologie und Biometrie der Gattung Tarsius, Storr, 1780. Herleitung von Evolutionensmechanismen bei einen Primaten. Courier Forschungsinstitut Senckenberg, 25, 1–161.Google Scholar
  55. Niemitz, C. (1984a). Synecological and feeding behavior of Tarsius. In C. Niemitz (Ed.) Biology of Tarsiers (pp. 59–75). Stuttgart: Gustav Fischer.Google Scholar
  56. Niemitz, C. (1984b) Locomotion and posture of Tarsius bancanus. In C. Niemitz (Ed.) Biology of Tarsiers (pp. 191–225). Stuttgart: Gustav Fischer.Google Scholar
  57. Niemitz, C., Klauer, G. & Eins, S. (1984). The interscapular brown fat body in Tarsius bancanus, with comparisons to Tupaia and man. In C. Niemitz (Ed.) Biology of Tarsiers (pp.258–273). Stuttgart: Gustav Fischer.Google Scholar
  58. Niemitz, C., Nietsch, A., Warter, S., & Rumpler, Y. (1991). Tarsius dianae: A New Primate Species from Central Sulawesi (Indonesia). Folia Primatologica, 56 (2) 105–116.CrossRefGoogle Scholar
  59. Oxnard, C.E., Crompton, R.H. & Liebermann, S.S. (1990) AnimalLifestyles and Anatomies. Seattle: Washington University Press.Google Scholar
  60. Peters, A. & Preuschoft, H. (1984) External biomechanics of leaping in Tarsius and its morphological and kinematic consequences. In C. Niemitz, (Ed.) Biology of Tarsiers (pp. 227–255). Stuttgart: Gustav Fischer.Google Scholar
  61. Pianka, E.R. (1970). On r- and K-selection. American Naturalist, 104, 592–597.CrossRefGoogle Scholar
  62. Polyak, S.D. (1957). The Vertebrate Visual System. Chicago: University of Chicago Press.Google Scholar
  63. Preuschoft, H. (1989). Quantitative Approaches to Primate Morphology. Folia Primatologica, 53, 82–100.CrossRefGoogle Scholar
  64. Preuschoft, H., Witte, H. & Demes, B. (1992). Biomechanical Factors that Influence Overall Body Shape of Large Apes and Humans. In S. Matano, R.H. Tuttle, H. Ishida & M. Goodman (Eds.) Topics in Primatology,Volume 3: Evolutionary Biology, Reproductive Endocrinology and Virology (pp. 259–289). Tokyo: University of Tokyo Press.Google Scholar
  65. Rasmussen, D.T. (1990). Primate Origins: Lessons from a neotropical marsupial. American Journal of Primatology, 22, 263–277.CrossRefGoogle Scholar
  66. Roberts, M. & Cunningham, B. (1986). Space and Substrate Use in Captive Western Tarsiers, Tarsius bancanus. International Journal of Primatology, 7 (2), 113–130.CrossRefGoogle Scholar
  67. Rollinson, J. & Martin, R.D. (1981). Comparative aspects of primate locomotion with special reference to arboreal cercopithecines. Symposia of the Zoological Society of London, 48, 377–427.Google Scholar
  68. Sellers, W.I & Crompton, R.H. (1994 in press). A System for 2- and 3-D Kinematic and Kinetic Analysis of Locomotion, and its Application to Analysis of the Energetic Efficiency of Jumping in Prosimians. Zeitschrift für Morphologie und A nthropologie. Google Scholar
  69. Smith, G.E. (1924). The Evolution of Man. London: Oxford University Press.Google Scholar
  70. Smith, R.M. (1987). Biomechanics of the locomotion of Galago senegalensis. Doctoral dissertation, University of Arizona, Tucson. Ann Arbor: University Microfilms Inc.Google Scholar
  71. Stern, J.T. & Oxnard, C.E. (1973). Primate locomotion: some links with evolution and morphology. Bibliotheca Primatologia, 4, 10–93. Basel: Karger.Google Scholar
  72. Sussman, R.W. (1991). Primate Origins and the Evolution of Angiosperms. American Journal of Primatology, 23, 209–223.CrossRefGoogle Scholar
  73. Sussman, R.W. & Raven P.H. (1978). Pollination by lemurs and marsupials: An archaic coevolutionary system. Science, 200, 731–736.PubMedCrossRefGoogle Scholar
  74. Szalay, F.S. (1972). Palaeobiology of the earliest primates. In R.H. Tuttle (Ed.) The Functional and Evolutionary Biology of Primates. (pp. 3–35). Chicago: Aldine-Atherton.Google Scholar
  75. Taylor, C.R., Heglund, N.C., & Maloiy, G.M.O. (1982). Energetics and mechanics of terrestrial locomotion I. Metabolic energy consumption as a function of speed and body size in birds and mammals. Journal of Experimental Biology, 971–21.Google Scholar
  76. Tattersall, I. (1982). The Primates of Madagascar. New York: Columbia University Press.Google Scholar
  77. Treff, H.A. (1970). Der Absprungwinkel beim schrägen Sprung des Galago (Galago senegalensis) Zeitschrift für Vergleichende Physiologie, 67, 120–132.CrossRefGoogle Scholar
  78. Tremble, M., Muskita, Y. & Supriatna, J. (1993). Field observations of Tarsius dianae at Lore Lindu National Park, Central Sulawesi, Indonesia. Tropical Biodiversity, 1(2), 67–76.Google Scholar
  79. Wagner, H. & Frost, B. (1993). Disparity-sensitive cells in the owl have a characteristic disparity. Nature, 364, 796–798.PubMedCrossRefGoogle Scholar
  80. Walton M. & Anderson, B.D. (1988). The aerobic cost of saltatory locomotion in the Fowlers’s toad (Bufo woodhousei fowleri) Journal of Experimental Biology, 136, 273–288.PubMedGoogle Scholar
  81. Walker, A. (1967). Locomotor adaptations in recent and fossil Madagascan lemurs. Doctoral dissertation, University of London.Google Scholar
  82. Walker, A. (1969). The locomotion of the lorises, with special reference to the potto. East African Wildlife Journal, 7, 1–5.Google Scholar
  83. Walker, A. (1974). Locomotor adaptations in Past and Present Prosimian Primates. In F.A. Jenkins Jr. (Ed.) Primate Locomotion (pp. 349–381). New York: Academic Press.Google Scholar
  84. Warren, R.D. and Crompton, R.H. (1994) A Comparative Study of Locomotion in Two Species of Nocturnal Lemur (A vahi occidentalis and Lepilemur edwardsi). Paper presented at the Swansea Meeting of the Society for Experimental Biology.Google Scholar
  85. Wood Jones, F. (1916) Arboreal Man. London: Arnold.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Robin Huw Crompton
    • 1
  1. 1.Department of Human Anatomy and Cell BiologyThe University of LiverpoolLiverpoolUK

Personalised recommendations