The Prokaryotes pp 3785-3805 | Cite as

The Genus Herpetosiphon

  • Hans Reichenbach


The Herpetosiphon species are aerobic, chemoorganotrophic, filamentous bacteria that are Gram-negative but do not have a typical Gram-negative cell wall. The filaments are very long, unbranched, and multicellular, between 0.6 and 1.5 μm wide and usually 300 to more than 1200 pm long (Fig. 1). Short transparent sections (“sleeves”: Fig. 2) are seen at the ends of many filaments. These sleeves are characteristic of Herpetosiphon, and they make it possible to recognize the organism easily under the microscope.


Activate Sludge Water Agar Filamentous Bacterium Ferric Ammonium Citrate Sewage Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Brauss, F. W., W. Heyne, and I. Heyne-Katzenberger. 1969. Beschreibung eines neuen lytisch-aktiven Bakterienstammes. Arch. Hyg. Bacteriol. 153: 457–459.Google Scholar
  2. Brock, T. D. 1968. Taxonomic confusion concerning certain filamentous blue-green algae. J. Phycol. 4: 178–179.CrossRefGoogle Scholar
  3. Brown, N. L., M. McClelland, and P. R. Whitehead. 1980. Hgi AI: a restriction endonuclease from Herpetosiphon giganteus HP 1023. Gene 9: 49–68.Google Scholar
  4. Copeland, J. J. 1936. Yellowstone thermal Myxophyceae. Ann. N.Y. Acad. Sci. 36: 1–232.Google Scholar
  5. Dhundale, A. R., T. Furuichi, S. Inouye, and M. Inouye. 1985. Distribution of multicopy single-stranded DNA among myxobacteria and related species. J. Bacteriol. 164: 914–917.PubMedPubMedCentralGoogle Scholar
  6. Gibson, J., W. Ludwig, E. Stackebrandt, and C. R. Woese. 1985. The phylogeny of the green photosynthetic bacteria: Absence of a close relationship between Chlorobium and Chloroflexus. System. Appl. Microbiol. 6: 152–156.CrossRefGoogle Scholar
  7. Godchaux, W., and E. R. Leadbetter. 1983. Unusual sulfonolipids are characteristic of the Cytophaga-Flexibacter group. J. Bacteriol. 153: 1238–1246.PubMedPubMedCentralGoogle Scholar
  8. Gräf, W., and G. Perschmann. 1970. Über eine neue Spezies von Vitreoscilla (Vitreoscilla proteolytica) im Bodensee. Arch. Hyg. Bacteriol. 154: 128–137.Google Scholar
  9. Gilde, H. 1979. Grazing by protozoa as selection factor for activated sludge bacteria. Microb. Ecol. 5: 225–237.CrossRefGoogle Scholar
  10. Holt, J. G. 1989. Genus Herpetosiphon Holt and Lewin, 1965, 2408, p.2136–2138. In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (ed.), Bergey’s manual of Systematic Bacteriology, vol. 3. Williams and Wilkins, Baltimore.Google Scholar
  11. Holt, J. G., and R. A. Lewin. 1968. Herpetosiphon aurantiacus gen. et sp. n., a new filamentous gliding organism. J. Bacteriol. 95: 2407–2408.Google Scholar
  12. Jurgens, U. J., J. Meissner, U. Fischer, W. A. König, and J. Weckesser. 1987. Ornithine as a constituent of the peptidoglycan of Chloroflexus aurantiacus, diaminopimelic acid in that of Chlorobium vibrioforme f thiosulfatophilum. Arch. Microbiol. 148: 72–76.CrossRefGoogle Scholar
  13. Jürgens, U. J., J. Meissner, H. Reichenbach, and J. Weckesser. 1989. L-Ornithine containing peptidoglycanpolysaccharide complex from the cell wall of the gliding bacterium Herpetosiphon aurantiacus. FEMS Microbiol. Lett. 60: 247–250.Google Scholar
  14. Kleinig, H., and H. Reichenbach. 1977. Carotenoid glucosides and menaquinones from the gliding bacterium Herpetosiphon giganteus Hp a2. Arch. Microbiol. 112: 307–310.PubMedCrossRefGoogle Scholar
  15. Koppe, F. 1924. Die Schlammflora der ostholsteinischen Seen and des Bodensees. Arch. Hydrobiol. 14: 619–672.Google Scholar
  16. Kroger, M., G. Hobom, H. Schütte, and H. Mayer. 1984. Eight new restriction endonucleases from Herpetosiphon giganteus-divergent evolution in a family of enzymes. Nucl. acids Res. 12: 3127–3141.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Lamont, H. C. 1969. Sacrificial cell death and trichome breakage in an oscillatorian blue-green alga: The role of murein. Arch. Microbiol. 69: 239–259.Google Scholar
  18. Lewin, R. A. 1969. A classification of flexibacteria. J. Gen Microbiol. 58: 189–206.PubMedCrossRefGoogle Scholar
  19. Lewin, R. A., 1970. New Herpetosiphon species (Flexibacterales). Can. J. Microbiol. 16: 517–520.PubMedCrossRefGoogle Scholar
  20. Lewin, R. A., and D. M. Lounsbery. 1969. Isolation, cultivation and characterization of flexibacteria. J. Gen. Microbiol. 58: 145. 170.Google Scholar
  21. Mayer, H., and H. Reichenbach. 1978. Restriction endonucleases: General survey procedure and survey of gliding bacteria. J. Bacteriol. 136: 708–713.PubMedPubMedCentralGoogle Scholar
  22. Meissner, J., J. H. Krauss, U. J. Jürgens, and J. Weckesser. 1988. Absence of a characteristic cell wall lipopolysaccharide in the phototrophic bacterium Chloroflexus aurantiacus. J. Bacteriol. 170: 3213–3216.PubMedPubMedCentralGoogle Scholar
  23. Oyaizu, H., B. Debrunner-Vossbrink, L. Mandelco, J. A. Studier, and C. A. Woese. 1987. The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. System. Appl. Microbiol. 9: 47–53.CrossRefGoogle Scholar
  24. Pate, J. L, and L. Y. E. Chang. 1979. Evidence that gliding motility in prokaryotic cells is driven by rotary assemblies in the cell envelopes. Curr. Microbiol. 2: 59–64.CrossRefGoogle Scholar
  25. Pierson, B. K., and R. W. Castenholz. 1974. A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch. Microbiol. 100: 5–24.PubMedCrossRefGoogle Scholar
  26. Pierson, B. K., S. J. Giovannoni, D. A. Stahl, and R. W. Castenholz. 1985. Heliothrix oregonensis, gen. nov., sp. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a. Arch. Microbiol. 142: 164–167.Google Scholar
  27. Pipes, W. O. 1978. Microbiology of activated sludge bulking. Adv. Appl. Microbiol. 24: 85–127.CrossRefGoogle Scholar
  28. Quinn, G. R., and V. B. D. Skerman. 1980. Herpetosiphon-nature’s scavenger? Curr. Microbiol. 4: 57–62.Google Scholar
  29. Reichenbach, H. 1981. Taxonomy of the gliding bacteria. Annu. Rev. Microbiol. 35: 339–364.PubMedCrossRefGoogle Scholar
  30. Reichenbach, H., and M. Dworkin. 1981. The order Cytophagales (with addenda on the genera Herpetosiphon, Saprospira, and Flexithrix), p. 356–379. In: M. P. Stan, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (ed.), The prokaryotes, vol. 1. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  31. Reichenbach, H., and J. R. Golecki. 1975. The fine structure of Herpetosiphon, and a note on the taxonomy of the genus. Arch. Microbiol. 102: 281–291.PubMedCrossRefGoogle Scholar
  32. Reichenbach, H., P. Beyer, and H. Kleinig. 1978. The pigments of the gliding bacterium Herpetosiphon giganteus. FEMS Microbiol. Lett. 3: 144–156.Google Scholar
  33. Reichenbach, H., H. K. Galle, and H. H. Heunert. 1980. Herpetosiphon giganteus (Leucotrichales). Wachstum und Bewegung. Encyclopaedia Cinematographica E 2420, film of the Institut für den wissenschaftlichen Film, Göttingen, Germany.Google Scholar
  34. Reichenbach, H., W. Ludwig, and E. Stackebrandt. 1986. Lack of relationship between gliding cyanobacteria and filamentous gliding heterotrophic eubacteria: comparison of 16S rRNA catalogues of Spirulina, Saprospira, Vitreoscilla, Leucothrix, and Herpetosiphon. Arch. Microbiol. 145: 391–395.CrossRefGoogle Scholar
  35. Rodicio, M. R., and K. F. Chater. 1988. Cloning and expression of the Sal I restriction-modification genes of Streptomyces albus G. Mol. G.n. Genet. 213: 346–353.CrossRefGoogle Scholar
  36. Salcher, O., G. Scheff, E. Senghas, I. Trick, and F Lingens. 1982. The nutritional pattern of filamentous bacteria isolated from bulking sludge. Zbl. Bakt. Hyg., I. Abt. Orig. C 3: 450–456.Google Scholar
  37. Sanfilippo, A., and R. A. Lewin. 1970. Preservation of viable flexibacteria at low temperatures. Can. J. Microbiol. 16: 441–444.PubMedCrossRefGoogle Scholar
  38. Senghas, R., and F. Lingens. 1985. Characterization of a new gram-negative filamentous bacterium isolated from bulking sludge. Appl. Microbiol. Biotechnol. 21: 118–124.Google Scholar
  39. Skerman, V. B. D., G. R. Quinn, L. I. Sly, and J. V. Hardy. 1977. Sheath formation by strains of Herpetosiphon species. Int. J. Syst. Bacteriol. 27: 274–278.CrossRefGoogle Scholar
  40. Skuja, H. 1956. Taxonomische und biologische Studien über das Phytoplankton schwedischer Binnengewässer. Nova Acta Reg. Soc. Sci. Upsaliensis, ser. IV, 16: 1–404.Google Scholar
  41. Soriano, S. 1945. El nuevo orden Flexibacteriales y la clasificación de los órdenes de las bacterias. Rev. Argent. Agron. (Buenos Aires) 12: 120–140.Google Scholar
  42. Soriano, S. 1947. The Flexibacteriales and their systematic position. Antonie van Leeuwenhoek 12: 215–222.PubMedCrossRefGoogle Scholar
  43. Stackebrandt, E., R. G. E. Murray, and H. G. Trüper. 1988. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives. ” Int. J. Syst. Bacteriol. 38: 321–325.CrossRefGoogle Scholar
  44. Stanier, R. Y., K. Kunisawa, M. Mandel, and G. CohenBazire. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35: 171–205.PubMedPubMedCentralGoogle Scholar
  45. Strohl, W. R., and J. M. Larkin. 1978. Cell division and trichome breakage in Beggiatoa. Curr. Microbiol. 1: 151–155.PubMedCrossRefGoogle Scholar
  46. Tayne, T. A., J. E. Cutler, and D. M. Ward. 1987. Use of Chloroflexus-specific antiserum to evaluate filamentous bacteria of a hot spring microbial mat. Appl. Environment. Microbiol. 53: 1982–1984.Google Scholar
  47. Trick, I., and F. Lingens. 1984. Characterization of Herpetosiphon spec.-a gliding filamentous bacterium from bulking sludge. Appl. Microbiol. Biotechnol. 19: 191198.Google Scholar
  48. van den Eynde, H., E. Stackebrandt, and R. de Wachter. 1987. The structure of the 5S ribosomal RNA of a member of the phylum of green non-sulfur bacteria and relatives. FEBS Lett. 213: 302–303.Google Scholar
  49. van Veen, W. L. 1973. Bacteriology of activated sludge, in particular the filamentous bacteria. Antonie van Leeuwenhoek 39: 189–205.PubMedCrossRefGoogle Scholar
  50. Woese, C. R., E. Stackebrandt, R. J. Macke, and G. E. Fox. 1985. A phylogenetic definition of the major eubacterial taxa. System. Appl. Microbiol. 6: 143–151.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Hans Reichenbach

There are no affiliations available

Personalised recommendations