Electrical Responses to Fertilization and Spontaneous Activation in Decapod Crustacean Eggs: Characteristics and Role

  • Henri Goudeau
  • Marie Goudeau

Abstract

Relatively little is known about egg activation in the Crustacea, with the exception of morphological observations on the resumption of meiosis and the cortical reaction. Morphological analyses have demonstrated that the resumption of meiotic maturation is initiated by seawater contact in some decapod species. In the prawn Palaemon serratus, meiotic resumption of oocytes which are spawned at first meiotic metaphase, depends on the presence of external Mg2+ but not on external Ca2+ (Goudeau and Goudeau 1986). In Penaeid shrimp, meiotic resumption of oocytes, which are spawned at late prophase or early metaphase, requires Mg2+ when the gametes are fertilized and both Mg2+ and Ca2+ if unfertilized (Pillai and Clark 1987). In crabs, spawned oocytes are in first meiotic metaphase and also resume meiosis upon exposure to seawater. The process requires only 30–50 µM Ca2+ in Mg2+ free artificial seawater (ASW) (unpublished results). With respect to the cortical reaction, cytological observations have permitted the detection of a sperm-dependent cortical vesicle exocytosis in barnacle eggs (Klepal et al. 1979). In Penaeid oocytes, a specific release of jelly components, initiated by spawning and originating from extracellular crypts formed by invaginations of the plasma membrane, has been observed. Jelly components undergo an enzyme-mediated transition from a heterogeneous to homogeneous state, which is dependent on both Mg2+ in seawater and a protease (Clark et al. 1974; Clark and Lynn 1977; Clark et al. 1980; Clark et al. 1985; Lynn and Clark 1975). Also in Penaeid shrimp, the formation of a “hatching” envelope is induced by contact with seawater, requiring only external Mg2+ when the eggs are fertilized, and both Ca2+ and Mg2+ when they are not (Pillai and Clark 1987). Finally, a complex cortical reaction has been described in the eggs of crabs (Goudeau and Lachaise 1980 a,b; Goudeau and Becker 1982), and lobsters (Talbot and Goudeau 1988). The cortical reaction in crab eggs is a two-step phenomenon that consists of I) the exocytosis of a fine granular material, elicited by contact with seawater (Goudeau and Goudeau 1985), and 2) a slow and long-lasting exocytosis of ring-shaped elements, which is sperm-dependent and leads to the elaboration of a thick extracellular capsule (Goudeau and Lachaise 1980b; Goudeau and Becker 1982). In prawn eggs, the cortical reaction requires external Mg2+, and is independent of fertilization (unpublished results).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bumpus, H. C. 1891. The embryology of the American lobster. J. Morphol. 5: 215–252.CrossRefGoogle Scholar
  2. Busa, W. B., J. E. Ferguson, S. K. Joseph, J. R. Williamson, and R. Nuccitelli. 1985. Activation of frog (Xenopus laevis) eggs by Inositol Trisphosphate. I. Characterization of Cat’ release from intracellular stores. J. Cell Biol. 101: 677–682.PubMedCrossRefGoogle Scholar
  3. Carré, D. and C. Sardet. 1984. Fertilization and early development in Beroe ovata. Dee. Biol. 105: 188–195.CrossRefGoogle Scholar
  4. Chambers, E. L. and J. De Armendi. 1979. Membrane potential, action potential and activation potential of eggs of the sea urchin, Lytechinus variegatus. Exp. Cell Res. 122: 203–218.CrossRefGoogle Scholar
  5. Clark, W. H. and J. W. Lynn. 1977. A Mg-dependent cortical reaction in the eggs of Penaeid shrimp. J. Exp. Zool. 200: 177–183.CrossRefGoogle Scholar
  6. Clark, W. H., H. Persyn and A. I. Yudin. 1974. A microscopic analysis of the cortical specializations and their activation in the egg of the prawn, Penaeus sp. Am. Zool. 14: 1251.Google Scholar
  7. Clark, W. H., J. W. Lynn, A. I. Yudin, and H. O. Persyn. 1980. Morphology of the cortical reaction in the eggs of Penaeus aztecus. Biol. Bull. 158: 175–186.CrossRefGoogle Scholar
  8. Clark, W. H., A. I. Yudin, and F. G. Griffin. 1985. Gamete interaction in the Penaeidae, Sicyonia ingentis. Dev. Growth and Differ. 27: 174.Google Scholar
  9. Clark, W. H., A. I. Yudin, F. J. Griffin, and K. Shigekawa. 1984. The control of gamete activation and fertilization in the marine Penaeidae Sicyonia ingentis. p. 459–472. In: Advances in Invertebrate Reproduction, vol. 3. W. Engels (Ed.). Elsevier, New York.Google Scholar
  10. Clark, W. H., M. G. Yudin, G. Kleve, and A. J. Yudin. 1981. An acrosome reaction in natantian sperm. J. Exp. Zool. 218: 279–291.CrossRefGoogle Scholar
  11. Cross, N. L. and R. P. Elinson. 1980. A fast block to polyspermy in frogs mediated by changes in the membrane potential. Dev. Biol. 75: 187–198.PubMedCrossRefGoogle Scholar
  12. Epel, D. 1978. Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes. Curr. Top. Dev. Biol. 12: 186–246.Google Scholar
  13. Fankhauser, G. 1948. The organization of the amphibian egg during fertilization and cleavage. Ann. N.Y. Acad. Sci. 82: 684–708.CrossRefGoogle Scholar
  14. Goudeau, H. and M. Goudeau. 1985. Fertilization in crabs: IV. The fertilization potential consists of a sustained egg membrane hyperpolarization. Gamete Res. 11: 1–17.CrossRefGoogle Scholar
  15. Goudeau, H. and M. Goudeau. 1986a. Electrical and morphological responses of the lobster egg to fertilization. Dev. Biol. 114: 325–335.CrossRefGoogle Scholar
  16. Goudeau, H. and M. Goudeau. 1986b. External Mg’ is required for hyperpolarization to occur in ovulated oocytes of the prawn Palaemon serratus. Dev. Biol. 118: 371–378.CrossRefGoogle Scholar
  17. Goudeau, M. and J. Becker. 1982. Fertilization in a crab. II. Cytological aspects of the cortical reaction and fertilization envelope elaboration. Tissue Cell 14: 273–282.PubMedCrossRefGoogle Scholar
  18. Goudeau, M. and H. Goudeau. 1986. The resumption of meiotic maturation of the oocyte of the prawn Palaemon serratus is regulated by an increase in extracellular Mg’ during spawning. Dev. Biol. 118: 361–370.CrossRefGoogle Scholar
  19. Goudeau, M. and F. Lachaise. 1980a. Fine structure and secretion of the capsule enclosing the embryo in a crab (Carcinus maenas) (L.). Tissue Cell 12: 287–308.PubMedCrossRefGoogle Scholar
  20. Goudeau, M. and F. Lachaise. 1980b. “Endogenous yolk” as the precursor of a possible fertilization envelope in a crab (Carcinus maenas). Tissue Cell 12:503–512.Google Scholar
  21. Gould, M., J. L. Stephano, and L. Z. Holland. 1986. Isolation of protein from Urechis sperm acrosome granules that binds sperm to eggs and initiates development. Dev. Biol. 117: 306–318.CrossRefGoogle Scholar
  22. Gould-Somero, M. and L. A. Jaffe. 1984. Control of cell fusion at fertilization by membrane potential. P. 27–38. In: Cell Fusion, 14th Miles International Symposium. R. F. Beers and E. G. Baddett (Eds.). Raven Press, New York.Google Scholar
  23. Gould-Somero, M., L. A. Jaffe, and L. Z. Holland. 1979. Electrically mediated fast polyspermy block in eggs of the marine worm, Urechis caupo. J. Cell Biol. 82: 426–440.CrossRefGoogle Scholar
  24. Grey, R. D., M. J. Bastiani, D. J. Webb, and E. R. Schertet. 1982. An electrical block is required to prevent polyspermy in eggs fertilized by natural mating of Xenopus laevis. Dev. Biol. 89: 475–484.CrossRefGoogle Scholar
  25. Hagiwara, S. and L. A. Jaffe. 1979. Electrical properties of egg membranes. Annu. Rev. Biophys. Bioeng. 8: 385–416.PubMedCrossRefGoogle Scholar
  26. Herrick, F. H. 1909. Natural history of the American lobster. Bull. U.S. Bur. Fish. 29: 149–408.Google Scholar
  27. Höglund, H. 1943. On the biology and larval development of Leander squilla (L.) formatypica de Man. Sven. Hydrogr. Biol. Komm. Skr. Ny Ser. Biol. 2: 2–44.Google Scholar
  28. Igusa, Y. and S. I. Miyazaki. 1983. Effects of altered extracellular and intracellular calcium concentration on hyperpolarizing responses of the hamster egg. J. Physiol. 340: 611–632.PubMedGoogle Scholar
  29. Igusa, Y., S. I. Miyazaki, and N. Yamashita. 1983. Periodic hyperpolarizing responses in hamster and mouse eggs fertilized with mouse sperm. J. Physiol. 340: 633–647.PubMedGoogle Scholar
  30. Jaffe, L. A. 1976. Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature (Lond.) 26: 68–71.CrossRefGoogle Scholar
  31. Jaffe, L. A. 1983. Fertilization potentials from eggs of the marine worms Chaetopterus and Saccoglossus, p. 211–218. In: The Physiology of Excitable Cells. W.J. Moody and A.D. Grinnel (Eds.). Alan R. Liss, New York.Google Scholar
  32. Jaffe, L. A. and M. Gould-Somero. 1985. Polyspermy preventing mechanism. p. 223–243. In: Biology of Fertilization, vol. 3. C.B. Metz and A. Monroy (Eds.). Academic Press, New York.Google Scholar
  33. Jaffe, L. A., M. Gould-Somero, and L. Z. Holland. 1982. Studies on the mechanism of the electrical polyspermy block using voltage clamp during cross-species fertilization. J. Cell Biol. 92: 616–621.PubMedCrossRefGoogle Scholar
  34. Jaffe, L. A. and L. C. Schlichter. 1985. Fertilization-induced ionic conductance in eggs of the frog Rana pipiens. J. Physiol. 358: 299–319.PubMedGoogle Scholar
  35. Klepal, W., H. Barnes, and M. Barnes. 1979. Studies on the reproduction of cirripedes. VII. The formation and fine structure of the fertilization membrane and egg case. J. Exp. Mar. Biol. Ecol. 36: 53–78.CrossRefGoogle Scholar
  36. Kline, D. 1988. Calcium-dependent events at fertilization of the frog egg: injection of a calcium buffer blocks ion channel opening, exocytosis and formation of pronuclei. Dev. Biol. 126: 346–361.PubMedCrossRefGoogle Scholar
  37. Kline, D., L. A. Jaffe, and R. T. Kado. 1986. A calcium-activated sodium conductance contributes to the fertilization potential in the egg of the nemertean worm Cerebratulus lacteus. Dev. Biol. 117: 184–193.PubMedCrossRefGoogle Scholar
  38. Kline, D., L. A. Jaffe, and R. P. Tucker. 1985. Fertilization potential and polyspermy prevention in the egg of the nemertean, Cerebratulus lacteus. J. Exp. Zool. 236: 45–52.CrossRefGoogle Scholar
  39. Longo, F. 1978. Effects of cytochalasin B on sperm-egg interactions. Dev. Biol. 67: 249–265.PubMedCrossRefGoogle Scholar
  40. Longo, F., J. W. Lynn, D. H. McCulloh, and E. L. Chambers. 1986. Correlative ultra-structural and electrophysiological studies of sperm egg interactions of the sea urchin, Lytechinus variegatus. Dev. Biol. 118: 155–166.CrossRefGoogle Scholar
  41. Lynn, J. W. and E. L. Chambers. 1984. Voltage clamp studies of fertilization in sea urchin eggs. I. Effect of clamped membrane potential on sperm entry, activation, and development. Dev. Biol. 102: 98–109.PubMedCrossRefGoogle Scholar
  42. Lynn, J. W. and W. H. Clark. 1975. A Mg dependent cortical reaction in the egg of Penaeid shrimp. J. Cell Biol. 67: 251a.Google Scholar
  43. Lynn, J. W. and W. H. Clark. 1983a. The fine structure of the mature sperm of the fresh water prawn Macrobrachium rosenbergii. Biol. Bull. 164: 459–470.CrossRefGoogle Scholar
  44. Lynn, J. W. and W. H. Clark. 1983b. A morphological examination of sperm-egg interaction in fresh water prawn Macrobrachium rosenbergii. Biol. Bull. 164: 446–458.CrossRefGoogle Scholar
  45. Lynn, J. W., D. H. McCulloh, and E. L. Chambers. 1988. Voltage clamp studies of fertilization in sea urchin eggs: II. Current patterns in relation to spperm entry, nonentry and activation. Dev. Biol. 128: 305–323.PubMedCrossRefGoogle Scholar
  46. McCulloh, D. H. and E. L. Chambers. 1986a. When does the sperm fuse with the egg? J. Gen. Physiol. 88: 38a - 39a.Google Scholar
  47. McCulloh, D. H. and E. O. Chambers. 1986b. Fusion and “unfusion” of sperm and egg are voltage dependent in the sea urchin Lytechinus variegatus. J. Cell Biol. 103: 236a.Google Scholar
  48. McCulloh, D. H., J. W. Lynn, and E. L. Chambers. 1987. Membrane depolarization facilitates sperm entry, large fertilization cone formation and prolonged current responses in sea urchin oocytes. Dev. Biol. 124: 177–190.PubMedCrossRefGoogle Scholar
  49. Miyazaki, S. I. and S. Hirai. 1979. Fast polyspermy block and activation potential. Correlated changes during oocyte maturation of a starfish. Dev. Biol. 70: 327–340.PubMedCrossRefGoogle Scholar
  50. Nuccitelli, R. 1980. The electrical changes accompanying fertilization and cortical vesicle secretion in the medaka egg. Dev. Biol. 76: 483–498.PubMedCrossRefGoogle Scholar
  51. Nouvel, H. and L. Nouvel. 1937. Recherches sur l’accouplement et la ponte chez les crustacés Décapodes Natantia. Bull. Soc. Zool. Fr. 208–221.Google Scholar
  52. Obata, S. and H. Kuroda. 1987. The second component of the fertilization potential in sea urchin (Pseudocentrotus depressus) eggs involves both Na’ and K` permeability. Dev. Biol. 122: 432–438.CrossRefGoogle Scholar
  53. Panouse, J. B. 1946. Recherches sur les phénomiènes humoraux chez les Crustacés. L’adaptation chrom atique et la croissance ovarienne chez la crevette Leander serratus. Ann. Inst. Oceanogr. 23: 65–147.Google Scholar
  54. Pillai, M. C. and W. H. Clark. 1987. Oocyte activation in the marine shrimp, Sicyonia ingentis. J. Exp. Zool. 244: 325–330.CrossRefGoogle Scholar
  55. Raven, C. P. 1966. Morphogenesis: The Analysis of Molluscan Development. Pergamon Press, Toronto.Google Scholar
  56. Romanoff, A. L. 1960. The Avian Embryo. Macmillan, New York.Google Scholar
  57. Rothschild, L. 1956. Fertilization. Wiley ( Ed. ), New York.Google Scholar
  58. Sandifer, P. A. and J. W. Lynn. 1980. Artificial insemination of caridean shrimp. p. 271–288. In: Advances in Invertebrate Reproduction. W. H. Clark and T. S. Adams (Eds.). Elsevier, North-Holland.Google Scholar
  59. Shigekawa, K., A. I. Yudin, and W. H. Clark. 1982. Separation and independence of the biphasic acrosome reaction events in Sicyonia ingentis. J. Cell Biol. 95: 161a.Google Scholar
  60. Slack, B. E., J. E. Bell, and D. J. Benos. 1986. Inositol-1,4,5-trisphosphate injection mimics fertilization potentials in sea urchin eggs. Am. J. Physiol. 250: C340 - C344.PubMedGoogle Scholar
  61. Spalding, J. F. 1942. The nature and formation of the spermatophore and sperm plug in Carcinus maenas. Q. J. Microsc. Sci. 83: 399–422.Google Scholar
  62. Swann, K. and M. J. Whitaker. 1987. Neomycin prevents the fusion of sperm with sea urchin eggs but not the early electrical events of fertilization. J. Physiol. 390: 140 p.Google Scholar
  63. Talbot, P. 1981. The ovary of the lobster, Homarus americanus. I. Architecture of the mature ovary. J. Ultrastruct. Res. 76: 235–248.PubMedCrossRefGoogle Scholar
  64. Talbot, P. 1983. Progress and problems in controlling reproduction in lobsters. In: Abstracts of the Third International Symposium of Invertebrate Reproduction. (Tübingen).Google Scholar
  65. Talbot, P. and M. Goudeau. 1988. A complex cortical reaction leads to formation of the fertilization envelope in the lobster (Homarus). Gamete Res. 19: 1–18.PubMedCrossRefGoogle Scholar
  66. Wourms, J. P. 1977. Reproduction and development in chondrychtyan fishes. Am. Zool. 17: 379–410.Google Scholar
  67. Zalokar, M. and I. Erk. 1977. Phase-partition fixation and staining of Drosophila eggs. Stain Technol. 52: 89–95.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Henri Goudeau
    • 1
    • 2
  • Marie Goudeau
    • 1
    • 2
  1. 1.Departement de Biologie, Service de BiophysiqueCEN/SACLAY UA CNRS 686, Station Biologique de RoscoffFrance
  2. 2.Department de Biologie, Service de BiophysiqueCEN/SACLAY 91191GIF-sur-YVETTE CedexFrance

Personalised recommendations