Energy Metabolism in Feasting and Fasting

  • O. E. Owen
  • G. A. ReichardJr.
  • M. S. Patel
  • G. Boden
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 111)


The history of humans is, in large part, a chronicle of their quest for food. Humans can feast when food is available and fast during caloric deprivation without serious consequences. The capability of humans to survive marked extremes in caloric intake depends on the ability (1) to selectively oxidize and excrete certain nitrogenous metabolites, (2) to store carbohydrate and lipid metabolites in an economical form during caloric excess, and (3) to spare protein and to selectively mobilize and oxidize substrates derived from fat stores during caloric deprivation.


Free Fatty Acid Ketone Body Respiratory Quotient Diabetic Ketoacidosis Plasma Free Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adibi, S.A. (1976). Metabolism of branched-chain amino acids in altered nutrition. Metabolism 25: 1287–1302.PubMedCrossRefGoogle Scholar
  2. Ahmed, M., Gannon, M.C., and Nuttall, F.Q. (1976). Postprandial plasma glucose, insulin, glucagon and triglyceride responses to a standard diet in normal subjects. Diabetologia 12: 61–67.PubMedCrossRefGoogle Scholar
  3. Balasse, E.O. and Havel, R.J. (1971). Evidence for an effect of insulin on the peripheral utilization of ketone bodies in dogs. J. Clin. Invest. 50: 801–813.Google Scholar
  4. Barter, P.J., Nestel, P.J., and Carroll, K.F. (1972). Precursors of plasma triglyceride fatty acid in humans. Effects of glucose consumption, clofibrate administration, and alcoholic fatty liver. Metabolism 21: 117–124.PubMedCrossRefGoogle Scholar
  5. Beatty, C.H., Peterson, R.D., Bocek, R.M., and West, E.S. (1959).Google Scholar
  6. Acetoacetate and glucose uptake by diaphragm and skeletal muscle from control and diabetic rats. J. BioZ. Chem. 234: 11–15.Google Scholar
  7. Benedict, F.G. (1915). A study of prolonged fasting. Carnegie Institute of Washington, Washington, DC, publication 203.Google Scholar
  8. Blackburn, G.L., Flatt, J.P., Clowes, G.H.A. Jr., O’Donell, T.F., and Hensle, T.E. (1973). Protein sparing therapy during periods of starvation with sepsis or trauma. Annals of Surgery 177: 588–594.PubMedCrossRefGoogle Scholar
  9. Boberg, J., Carlson, L.A., Freyschuss, U., Lassers, B.W., and Wahlquist, M.L. (1972). Splanchnic secretion rates of plasma triglycerides and total and splanchnic turnover of plasma free fatty acids in men with normo-and hypertriglyceridaemia. Eur. J. Clin. Invest. 2: 454–466.Google Scholar
  10. Buse, M.G., Biggers, J.F., Friderici, K.H., and Buse, J.F. (1972). Oxidation of branched chain amino acids by isolated hearts and diaphragms of the rat. J. Biol. Chem. 247: 8085–8096.Google Scholar
  11. Cahill, G.F. Jr., Herrera, M.G., Morgan, A.P., Soeldner, J.S., Steinke, J., Levy, P.L., Reichard, G.A. Jr., and Kipnis, D.M. (1966). Hormone-fuel interrelationships during fasting. J. Clin. Invest. 45: 1751–1769.CrossRefGoogle Scholar
  12. Drenick, E.J., Alvarez, L.C., Tamasi, G.C., and Brickman, A.S. (1972). Resistance to symptomatic insulin reactions after fasting. J. Clin. Invest. 51: 2757–2762.CrossRefGoogle Scholar
  13. Dubois, E.F. (1921). The basal metabolism in fever. JAMA 77:352357. Felig, P. (1973). The glucose-alanine cycle. Metabolism 22:179–9n7Google Scholar
  14. Felig, P., Owen, O.E., Wahren, J., and Cahill, G.F. Jr. (1969). Amino acid metabolism during prolonged starvation. J. CZin. Invest. 48: 584–594.Google Scholar
  15. Felig, P., Wahren, J., and Hendler, R. (1975). Influence of oral glucose ingestion on splanchnic glucose and gluconeogenic substrate metabolism in man. Diabetes 24: 468–475.PubMedCrossRefGoogle Scholar
  16. Gammeltoft, A. (1950). The significance of ketone bodies in fat metabolism. I. Concentration of ketone bodies in the arterial and venous blood in human subjects during starvation. Acta Physiol. Scand. 19: 270–287.Google Scholar
  17. Garber, A.J., Menzel, P.H., Boden, G., and Owen, O.E. (1974). Hepatic ketogenesis and gluconeogenesis in humans. J. CZin. Invest. 54: 981–989.Google Scholar
  18. Goldman, R.F., Haisman, M.F., Bynum, G., Horton, E.S., and Sims, E.A.H. (1973). Experimental obesity in man: Metabolic rate in relation to dietary intake. pp. 165–186.Google Scholar
  19. G.A. Bray (Ed.) Obesity in Perspective. Fogarty International Center Series on Preventive Medicine, DHEW Publication No. (NIH) 75–708.Google Scholar
  20. Gottstein, U., Muller, W., Berghoff, W., Gartner, H., and Held, K. (1971). Zur Utilisation von nicht-veresterten Fettsauren and Ketonkorpern im Gehirn des Menschen. Klin. Wchr. 49: 406–411.Google Scholar
  21. Hagenfeldt, L. and Wahren, J. (1971). Human forearm muscle metabolism during exercise. VI. Substrate utilization in prolonged fasting. Scand. J. Clin. Lab. Invest. 27: 299–306.CrossRefGoogle Scholar
  22. Havel, R.J. (1972). Caloric homeostasis and disorders of fuel transport. N. Eng. J. Med. 287: 1186–1192.Google Scholar
  23. Havel, R.J., Kane, J.P., Balasse, E.O., Segel, N., and Basso, L.V. (1970). Splanchnic metabolism of free fatty acids and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertriglyceridemic humans. J. Clin. Invest. 49: 2017–2035.Google Scholar
  24. Hawkins, R.A., Williamson, D.H., and Krebs, H.A. (1971). Ketonebody utilization by adult and suckling rat brain in vivo. Biochem. J. 122: 13–18.Google Scholar
  25. Issekutz, B. Jr., Paul, P., Miller, H.I., and Bortz, W. (1968). Oxidation of plasma free fatty acids in lean and obese humans. Metabolism 17: 62–73.PubMedCrossRefGoogle Scholar
  26. Keys, A.., Anderson, J.T., and Brozek, J. (1955). Weight gain from simple overeating. Metabolism 4: 427–432.PubMedGoogle Scholar
  27. Krebs, H.A. (1972). Some aspects of the regulation of fuel supply in omnivorous animals. Adv. Enzyme Regul. 10: 397–420.Google Scholar
  28. Little, J.R. and Spitzer, J.J. (1971). Uptake of ketone bodies by dog kidney in vivo. Am. J. Physiol. 221: 679–683.Google Scholar
  29. Marliss, E.B., Aoki, T.T., Pozefsky, T., Most, A.S., and Cahill, G.F. (1971). Muscle and splanchnic glutamine and glutamate metabolism in postabsorptive and starved man. J. CZin. Invest. 50: 814–817.Google Scholar
  30. Müller, W.A., Faloona, G.R., Aguilar-Parada, E., and Unger, R.H. (1970). Abnormal alpha-cell function in diabetes. Response to carbohydrate and protein ingestion. N. Eng. J. Med. 283: 109–115.Google Scholar
  31. Nilsson, L.H. (1973). Liver glycogen content in man in the postabsorptive state. Scand. J. Clin. Lab. Invest. 32: 317–323.CrossRefGoogle Scholar
  32. Nilsson, L.H. and Hultman, E. (1974). Liver and muscle glycogen in man after glucose and fructose infusion. Scand. J. Clin. Invest. 33: 5–10.CrossRefGoogle Scholar
  33. Owen, 0.E., Block, B.S.B., Patel, M., Boden, G., McDonough, M., Kreulen, T., Shuman, C.R., and Reichard, G.A. Jr. (1977). Human splanchnic metabolism during diabetic ketoacidosis. Metabolism 26: 381–398.CrossRefGoogle Scholar
  34. Owen, O.E. and Cahill, G.F. Jr. (1973). Metabolic effects of exogenous glucocorticoids in fasted man. J. Clin. Invest. 52: 2596–2605.Google Scholar
  35. Owen, O.E., Felig, P., Morgan, A.P., Wahren, J., and Cahill, G.F. Jr. (1969). Liver and kidney metabolism during prolonged starvation. J. Clin. Invest. 48: 574–583.Google Scholar
  36. Owen, O.E., Morgan, A.P., Kemp, H.G., Sullivan, J.M., Herrera, M.G., and Cahill, G.F. Jr. (1967). Brain metabolism during fasting. J. Clin. Invest. 46: 1589–1595.CrossRefGoogle Scholar
  37. Owen, O.E., Patel, M.S., Block, B.S.B., Kreulen, T.H., Reichle, F.A., and Mozzoli, M.A. (1976). Gluconeogenesis in normal, cirrhotic and diabetic humans. In R.W. Hanson and M.A. Mehlman (Eds.) Gluconeogenesis: Regulation in Mananalian Species. John Wiley, New York.Google Scholar
  38. Owen, O.E. and Reichard, G.A. Jr. (1975). Ketone body metabolism in normal, obese and diabetic subjects. Israel J. Med. Sci. 11: 560–570.Google Scholar
  39. Owen, O.E. and Reichard, G.A. Jr. (1971). Human forearm metabolism during prolonged starvation. J. Clin. Invest. 50:15361545.Google Scholar
  40. Owen, O.E., Reichard, G.A. Jr., Markus, H., Boden, G., Mozzoli, M.A., and Shuman, C.R. (1973). Rapid intravenous sodium acetoacetate infusion in man. Metabolic and kinetic responses. J. Clin. Invest. 52: 2606–2615.Google Scholar
  41. Passmore, R. and Swindells, Y.E. (1963). Observations on the respiratory quotients and weight gains of man after eating large quantities of carbohydrate. Brit. J. Nutr. 17: 331–339.Google Scholar
  42. Patel, M.S., Owen, O.E., Goldman, L.I., and Hanson, R.W. (1975). Fatty acid synthesis by human adipose tissue. Metabolism 24: 161–173.PubMedCrossRefGoogle Scholar
  43. Reichard, G.A. Jr., Owen, O.E., Haff, A.C., Paul, P., and Bortz, W.M. (1974). Ketone-body production and oxidation in fasting. J. Clin. Invest. 53: 508–515.CrossRefGoogle Scholar
  44. Reidenberg, M.M., Haag, B.L., Channick, B.J., Shuman, C.R., and Wilson, T.G.G. (1966). The response of bone to metabolic acidosis in man. Metabolism 15: 236–241.PubMedCrossRefGoogle Scholar
  45. Ruderman, N.B. and Goodman, M.N. (1974). Inhibition of muscle acetoacetate utilization during diabetic ketoacidosis. Am. J. Physiol. 226: 136–143.Google Scholar
  46. Ruderman, N.S. and Goodman, M.N. (1973). Regulation of ketone body metabolism in skeletal muscle. Am. J. Physiol. 224:13911397.Google Scholar
  47. Sapir, D.G. and Owen, O.E. (1975). Renal conservation of ketone bodies during starvation. Metabolism 24: 23–33.PubMedCrossRefGoogle Scholar
  48. Sapir, D.G., Owen, O.E., Pozefsky, T., and Walser, M. (1974). Nitrogen sparing induced by a mixture of essential amino acids given chiefly as their ketoanalogues during prolonged starvation in obese subjects. J. Clin. Invest. 54: 974–980.Google Scholar
  49. Sherlock, S. (1975). Anatomy of the liver. p. 1. In S. Sherlock (Ed.) Diseases of the Liver and Biliary System, 5th ed. Blackwell Scientific Publications, Oxford.Google Scholar
  50. Sherwin, R.S., Hendler, R.G., and Felig, P. (1975). Effect of ketone infusions on amino acid and nitrogen metabolism in man. J. Clin. Invest. 55: 1382–1390.Google Scholar
  51. Smith, R., Fuller, D.J., Wedge, J.H., Williamson, D.H., and Alberti, K.G.G.M. (1975). Initial effect of injury on ketone bodies and other blood metabolites. Lancet I: 1–3.CrossRefGoogle Scholar
  52. Wahren, J., Felig, P., Cerasi, E., and Luft, R. (1972). Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus. J. Clin. Invest. 51: 1870–1878.Google Scholar
  53. Wahren, J., Felig, P., and Hagenfeldt, L. (1976). Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J. Clin. Invest. 57: 987–999.Google Scholar
  54. Wilmore, D.W. and Dudrick, S.J. (1968). Growth and development. of an infant receiving all nutrients exclusively by vein. JAMA 203: 140–144.CrossRefGoogle Scholar


  1. Sims, E.A.H. (1976). Experimental obesity, dietaryinduced thermogenesis, and their clinical implications. Clinics Endocrinol. Metab. 5: 377–395.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • O. E. Owen
    • 1
  • G. A. ReichardJr.
    • 1
  • M. S. Patel
    • 1
  • G. Boden
    • 1
  1. 1.Temple University Health Sciences CenterPhiladelphiaUSA

Personalised recommendations