Advances in Microbial Ecology pp 293-352

Part of the Advances in Microbial Ecology book series (AMIE, volume 9)

Microelectrodes: Their Use in Microbial Ecology

  • Niels Peter Revsbech
  • Bo Barker Jørgensen

Abstract

Among the fundamental goals of microbial ecology is the development of methods that will enable the identification and counting of the important microorganisms in nature, the determination of their physical and chemical microenvironment, and the analysis of their metabolic processes and interactions. Due to the small size of the organisms, much effort has been devoted to the development of high-resolution techniques for the observation and understanding of the world of bacteria on a microscale. Scanning and transmission electron microscopy and fluorescent staining, immunofluorescence and other techniques for light microscopy have been the most successful in terms of reaching a high spatial resolution. With respect to our understanding of the microbial microenvironments and of the nature of the microorganisms that carry out the measured metabolic activities, there is still a long way to go. Most chemical and radiotracer techniques in use today operate on a centimeter or at best on a millimeter scale and in most cases their results cannot be directly related to the relevant microorganisms. One notable exception to this is the combined use of autoradiography and fluorescence microscopy on microbial communities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, M., 1977, Introduction to Soil Microbiology, Wiley, New York.Google Scholar
  2. Aller, R. C., 1977, The Influence of Macrobenthos on Chemical Diagenesis of Marine Sediments, Ph.D. thesis, Yale University.Google Scholar
  3. Ammann, D., Lanter, F., Steiner, R. A., Schultess, P., Shijo, Y., and Simon, W., 1981, Neutral carrier based hydrogen ion selective microelectrode for extra-and intracellular studies, Anal. Chem. 53: 2267–2269.PubMedCrossRefGoogle Scholar
  4. Anderson, O. R., and Be, A. W. H., 1976, The ultrastructure of a planktonic foraminifer, Globigerinoides sacculifer (Brady), and its symbiotic dinoflagellates, J. Foram. Res. 6: 121.CrossRefGoogle Scholar
  5. Armstrong, W., 1967, The use of polarography in the assay of oxygen diffusing from roots in anaerobic media, Physiol. Plant. 20: 540–553.CrossRefGoogle Scholar
  6. Arnold, M. A., 1985, Enzyme-based fiber optic sensor, Anal. Chem. 57: 565–566.PubMedCrossRefGoogle Scholar
  7. Baumgärtl, H., and D. W. Lubbers, 1983, Platinum needle electrodes for polarographic measurement of local 02 pressure in cellular range of living tissue. Its construction and properties, in: Polarographic Oxygen Sensors: Aquatic and Physiological Applications ( E. Gnaiger and H. Forstner, eds.), pp. 37–65, Springer-Verlage, Heidelberg.CrossRefGoogle Scholar
  8. Be, A. W. H., and Tolderlund, D. S., 1971, Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans, in: Micropaleontology of Oceans ( B. M. Funnell and W. R. Riedel, eds.), pp. 105–149, Cambridge University Press, Cambridge.Google Scholar
  9. Berner, R. A., 1962, Electrode studies of hydrogen sulfide in marine sediments, Geochim. Cosmochim. Acta 27: 563–575.CrossRefGoogle Scholar
  10. Berner, R. A., 1980, Early Diagenesis, a Theoretical Approach, Princeton University Press, Princeton, New Jersey.Google Scholar
  11. Board, P. A., 1976, Anaerobic regulation of atmospheric oxygen, Atmos. Environ. 10: 339–342.PubMedCrossRefGoogle Scholar
  12. Boudreau, B. P., and Guinasso, N. L., 1982, The influence of a diffusive boundary sublayer on accretion, dissolution, and diagenesis at the sea floor, in: The Dynamic Environment of the Sea Floor ( K A. Fanning and F. T. Manheim, eds.), pp. 115–145, Lexington Books, Lexington, Massachusetts.Google Scholar
  13. Broecker, W. S., and Peng, T.-H, 1974, Gas exchange rate between sea and air, Tellus 26: 21–35.CrossRefGoogle Scholar
  14. Bungay, H. R., and Chen, Y. S., 1981, Dissolved oxygen profiles in photosynthetic microbial slimes, Biotechnol. Bioeng. 23: 1893–1895.CrossRefGoogle Scholar
  15. Bungay, H. R., 3rd, Whalen, W. J., and Sanders, W. M., 1969, Microprobe techniques for determining diffusivities and respiration in microbial slime systems, Biotechnol. Bioeng. 11: 765–772.CrossRefGoogle Scholar
  16. Caflish, C. R, and Carter, N. W., 1974, A micro PCO2 electrode, Anal. Biochem. 60: 25 2257.Google Scholar
  17. Chen, Y. S., and Bungay, H. R., 1981, Microelectrode studies of oxygen transfer in trickling filter slimes, Biotechnol. Bioeng. 23: 781–792.CrossRefGoogle Scholar
  18. Clark, L. C., Wolf, R., Granger, D., and Taylor, A., 1953, Continuous recording of blood oxygen tension by polarography, J. Appl. Physiol. 6: 189–193.PubMedGoogle Scholar
  19. Cohen, Y., 1983, The Solar Lake cyanobacterial mats: Strategies of photosynthetic life under sulfide, in: Microbial Mats: Stromatolites (Y. Cohen, R. W. Castenholz, and H. O. Halvorson, eds.), pp. 133–148, Alan R. Liss, New York.Google Scholar
  20. Cohen, Y., Padan, E., and Shilo, M., 1975a, Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica, J. Bacteriol. 123: 855–861.PubMedGoogle Scholar
  21. Cohen, Y., Jorgensen, B. B., Padan, E, and Shilo, M., 1975b, Sulfide dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica, Nature 257: 489–492.CrossRefGoogle Scholar
  22. Crank, J., 1983, The Mathematics of Diffusion, Oxford University Press, London.Google Scholar
  23. Dale, T., 1978, Total, chemical, and biological oxygen consumption of the sediments in Lindaspollene, Western Norway, Mar. Biol. 49: 333–341.CrossRefGoogle Scholar
  24. Davis, R. B., 1974, Tubificids alter profiles of redox potential and pH in profundal lake sediment, Limnol. Oceanogr. 19: 342–346.CrossRefGoogle Scholar
  25. Drew, E. A., 1973, The biology and physiology of alga-invertebrate symbioses. III In situ measurements of photosynthesis and calcification in some hermatypic corals, J. Exp. Mar. Biol. Ecol. 13: 165–179.CrossRefGoogle Scholar
  26. Duursma, E. K., and Hoede, C., 1967, Theoretical, experimental and field studies concerning molecular diffusion of radioisotopes in sediments and suspended solid particles of the sea. Part A: Theories and mathematical calculations, Neth. J. Sea Res. 3: 423–457.CrossRefGoogle Scholar
  27. Edwards, R. W., 1958, The effect of larvae of Chironemus riparius Meigen on the redox potentials of settled activated sludge, Ann. Appl. Biol. 46: 457–464.Google Scholar
  28. Fenchel, T., 1969, The ecology of marine microbenthos. 4. Structure and function of the benthic ecosystem, its chemical and physical factors and the meiofauna communities with special reference to the ciliated protozoa, Ophelia 6: 1–182.CrossRefGoogle Scholar
  29. Fluhler, H., Ardakan, M. S., Szusckiewicz, and Stolzy, L. H., 1976, Field measured nitrous oxide concentrations, redox potentials, oxygen diffusion rates, and oxygen partial pressures in relation to denitrification, Soil Sci. 122: 107–114.Google Scholar
  30. Greenwood, D. J., and Goodman, D., 1967, Direct measurement of the distribution of oxygen in soil aggregates and in columns of fine soil crumbs, J. Soil. Sci. 18: 182–196.CrossRefGoogle Scholar
  31. Guterman, H., and Ben-Yaakov, S., 1983, Determination of total dissolved sulfide in the pH range 7.5 to 11.5 by ion selective electrodes, Anal. Chem. 55: 1731–1734.CrossRefGoogle Scholar
  32. Harris, G. P., 1978, Photosynthesis, productivity and growth: The physiological ecology of phytoplankton, Ergeb. Limnol. 10: 1–171.Google Scholar
  33. Herman, H. B., and Rechnitz, G. A., 1975, Preparation and properties of a carbonate ion-selective membrane electrode, Anal. Chim. Acta 76: 155–164.CrossRefGoogle Scholar
  34. Howell, J. O., and Wightman, R. M., 1984, Ultrafast voltammetry and voltammetry in highly resistive solutions with microvoltammetric electrodes, Anal. Chem. 56: 524–529.CrossRefGoogle Scholar
  35. Hunding, C. and Hargrave, B. T., 1973, A comparison of benthic microalgal production measured by C’4 and oxygen methods, J. Fish. Res. Board Can. 30: 309–312.CrossRefGoogle Scholar
  36. Jerlov, N., 1976, Optical Oceanography, Elsevier, Amsterdam.Google Scholar
  37. Jones, J. G., Gardener, S., and Simon, B. M., 1983, Bacterial reduction of ferric iron in stratified lake, J. Gen. Microbiol. 129: 131–139.Google Scholar
  38. Jorgensen, B. B., 1977, The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark), Limnol. Oceanogr. 22: 814–832.CrossRefGoogle Scholar
  39. Jorgensen, B. B., 1982, Ecology of the bacteria of the sulfur cycle with special reference to anoxic-oxic interface environments, Phil. Trans. R. Soc. Lond. B 298: 543–561.CrossRefGoogle Scholar
  40. Jorgensen, B. B., 1983, The microbial sulfur cycle, in: Microbial Geochemistry ( W. E. Krumbein, ed.), pp. 91–124, Blackwell, Oxford.Google Scholar
  41. Jorgensen, B. B., and Revsbech, N. P., 1983, Colorless sulfur bacteria, Beggiatoa spp. And Thiovolum spp. in 02 and H2S microgradients, Appl. Environ. Microbiol. 45: 1261–1270.PubMedGoogle Scholar
  42. Jorgensen, B. B., and Revsbech, N. P., 1985, Diffusive boundary layers and the oxygen uptake of sediments and detritus, Limnol. Oceanogr. 30: 11–21.Google Scholar
  43. Jorgensen, B. B., Revsbech, N. P., Blackburn, T. H., and Cohen, Y., 1979, Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat sediment, Appl. Environ. Microbiol. 38: 46–58.PubMedGoogle Scholar
  44. Jorgensen, B. B., Revsbech, N. P., and Cohen, Y., 1983, Photosynthesis and structure of benthic microbial mats: Microelectrode and SEM studies of four cyanobacterial communities, Limnol. Oceanogr. 28: 1075–1093.CrossRefGoogle Scholar
  45. Jorgensen, B. B., Erez, J., Revsbech, N. P., and Cohen, Y., 1985, Symbiotic photosynthesis in planktonic foraminifera, Globigerinoides sacculifer (Brady), studied with microelectrodes, Limnol Oceanogr. 30: 1253–1267.CrossRefGoogle Scholar
  46. Jorgensen, B. B., Cohen, Y., and Revsbech, N. P., 1986, Transition from anoxygenic to oxygenic photosynthesis in a microcoleus chtonoplastes Cyanobacterial mat, Appl. Environ. Microbiol. 51 (2) (in press).Google Scholar
  47. Joshi, M. M., and Hollis, J. P., 1977, Interaction of Beggiatoa and rice plant: Detoxification of hydrogen sulfide in the rice rhizosphere, Science 195: 179–180.PubMedCrossRefGoogle Scholar
  48. Kelly, D. P., 1982, Biogeochemistry of the chemolithotrophic oxidation of inorganic sulfur, Phil. Trans. R. Soc. Lond. B 298: 499–528.CrossRefGoogle Scholar
  49. Lean, D. R. S., and Burnison, B. K., 1979, An evaluation of errors in the 14C method of primary production measurement, Limnol. Oceanogr. 24: 917–928.CrossRefGoogle Scholar
  50. Lemon, E. R., and Erickson, A. E., 1952, The measurement of oxygen diffusion in soil with a platinum microelectrode, Soil Sci. Soc. Am. Proc. 16: 160–163.CrossRefGoogle Scholar
  51. Lindeboom, H. J., and Sandee, A. J. J., 1984, The effect of coastal engineering projects on microgradients and mineralization reactions in sediments, Water Sci. Technol. 16: 8794.Google Scholar
  52. Murray, J. W., and Grundmanis, V., 1980, Oxygen consumption in pelagic marine sediments, Science 209: 1527–1530.PubMedCrossRefGoogle Scholar
  53. Naylor, P. F. D., and Evans, N. T. S., 1960, An electrode for measuring absolute oxygen tension in tissues, J. Polarogr. Soc. 2: 22–24.Google Scholar
  54. Nelson, D. C., and Jannasch, H. W., 1983, Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures, Arch. Microbiol. 136: 262–269.CrossRefGoogle Scholar
  55. Pamatmat, M. M., 1971, Oxygen consumption by the seabed, IV Shipboard and laboratory experiments, Limnol Oceanogr. 16: 536–550.CrossRefGoogle Scholar
  56. Prezelin, B. B., 1976, The role of peridinin-chlorophyll a-protein in the photosynthetic light adaptation of the marine dinoflagellate, Glenodinium sp., Planta 130: 225–233.CrossRefGoogle Scholar
  57. Prezelin, B. B., Ley, A. C., and Haxo, F. T., 1976, Effects of growth irradiance on the photosynthetic action spectra of the marine dinoflagellate, Glenodinium sp., Planta 130: 251–256.CrossRefGoogle Scholar
  58. Pucacco, L. R., and Carter, N. W., 1978, An improved PCO2 microelectrode, Anal. Biochem. 90: 427–434.PubMedCrossRefGoogle Scholar
  59. Pui, C. P., Rechnitz, G. A., and Miller, R. F., 1978, Micro-size potentiometric probes for gas and substrate sensing, Anal. Chem. 50: 330–333.CrossRefGoogle Scholar
  60. Purcell, E. M., 1977,. Life at low Reynolds number, Am. J. Phys. 45(1):3–11.Google Scholar
  61. Reimers, C. E., and Smith, K. L., 1986, Reconciling measured and predicted fluxes of oxygen across the deep sea sediment-water interface, Limnol. Oceanogr.Google Scholar
  62. Reimers, C. E., Kaihorn, S., Emerson, S. R., and Nealson, K. H., 1984, Oxygen consumption rates in pelagic sediments from the Central Pacific: First estimates from microelectrode profiles, Geochim. Cosmochim. Acta 48:903–911Google Scholar
  63. Revsbech, N. P., 1983, In situ measurement of oxygen profiles of sediments by use of oxygen microelectrodes, in: Polarographic Oxygen Sensors: Aquatic and Physiological Applications (E. Gnaiger and H. Forstner, eds.), pp. 265–273, Springer, Heidelberg.Google Scholar
  64. Revsbech, N. P., and Jorgensen, B. B., 1983, Photosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: Capabilities and limitations of the method, Limnol. Oceanogr. 28: 749–756.CrossRefGoogle Scholar
  65. Revsbech, N. P., and Ward, D. M., 1983, Oxygen microelectrode that is insensitive to medium chemical composition: Use in an acid microbial mat dominated by Cyanidium caldarium, Appl. Environ. Microbiol. 45: 755–759.PubMedGoogle Scholar
  66. Revsbech, N. P., and Ward, D. M., 1984a, Microprofiles of dissolved substances and photosynthesis in microbial mats measured with microelectrodes, in: Microbial Mats: Stromatolites ( Y. Cohen, R. W. Castenholz, and H. O. Halvorson, eds.), pp. 171–188, Alan R. Liss, New York.Google Scholar
  67. Revsbech, N. P., and Ward, D. M., 1984b, Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat, Appl. Environ. Microbiol. 48: 270–275.PubMedGoogle Scholar
  68. Revsbech, N. P., Jorgensen, B. B., and Blackburn, T. H., 1980a, Oxygen in the seabottom measured with a microelectrode, Science 207: 1355–1356.CrossRefGoogle Scholar
  69. Revsbech, N. P., Sorensen, J., Blackburn, T. H., and Lomholt, J. P., 1980b, Distribution of oxygen in marine sediments measured with microelectrodes, Limnol. Oceanogr. 25: 403–411.CrossRefGoogle Scholar
  70. Revsbech, N. P., Jorgensen, B. B., and Brix, O., 1981, Primary production of microalgae in sediments measured by oxygen microprofile, H14CO3 fixation and oxygen exchange methods, Limnol. Oceanogr. 26: 717–730.CrossRefGoogle Scholar
  71. Revsbech, N. P., Jorgensen, B. B., Blackburn, T. H., and Cohen, Y., 1983, Microelectrode studies of photosynthesis and 02, H2S, and pH profiles of a microbial mat, Limnol. Oceanogr. 28: 1062–1074.CrossRefGoogle Scholar
  72. Revsbech, N. P., Madsen, B., and Jorgensen, B. B., 1986, Oxygen production and consumption in sediments determined at high spatial resolution by computer simulation of oxygen microelectrode data, Limnol. Oceanogr. (in press).Google Scholar
  73. Sand-Jensen, K., Prahl, C., and Stockholm, H., 1982, Oxygen release from roots of submerged aquatic macrophytes, Oikos 38: 349–354.CrossRefGoogle Scholar
  74. Sand-Jensen, K., Revsbech, N. P., and Jorgensen, B. B., 1985, Microprofiles of oxygen in epiphyte communities on submerged macrophytes, Mar. Biol. 89: 55–62.CrossRefGoogle Scholar
  75. Santschi, P. H., Bower, P., Nyffeler, U. P., Azvedo, A., and Broecker, W. S., 1983, Estimates of the resistance of chemical transport posed by the deep-sea boundary layer, Limnol. Oceanogr. 28: 899–912.CrossRefGoogle Scholar
  76. Sexstone, A. J., Revsbech, N. P., Parkin, T. B., and Tiedje, J. M., 1985, Direct measurement of oxygen profiles and denitrification rates in soil aggregates, Soil Sci. Soc. Am. J. 49: 645–651.CrossRefGoogle Scholar
  77. Shiver, D. F., 1969, The Manipulation of Air-Sensitive Compounds, McGraw-Hill, New York.Google Scholar
  78. Smith, K. L., Jr., and Baldwin, R. J., 1984, Seasonal fluctuation in deep-sea sediment community respiration: Central and eastern North Pacific, Nature 307: 624–626.CrossRefGoogle Scholar
  79. Smith, K. L., Jr., and Hinga, K. R., 1983, Sediment community respiration in the deep sea, in: The Sea ( G. T. Rowe, ed.), Vol. 8, pp. 331–370, Wiley, New York.Google Scholar
  80. Sorensen, J., 1984, A headspace technique for oxygen measurement in deep-sea sediment cores, Limnol. Oceanogr. 29: 650–652.CrossRefGoogle Scholar
  81. Sorensen, J., Jorgensen, B. B., and Revsbech, N. P., 1979, A comparison of oxygen, nitrate, and sulfate respiration in coastal marine sediments, Microb. Ecol. 5: 105–115.CrossRefGoogle Scholar
  82. Stanier, R. Y., Adelberg, E. A., and Ingraham, J. L., 1977, General Microbiology, 4th ed., Macmillan, London.Google Scholar
  83. Steemann-Nielsen, E., 1952, Use of radioactive carbon (C14) for measuring organic production in the sea, J. Cons. Cons. Int. Explor. Mer 18: 117–140.Google Scholar
  84. Thomas, R. C., 1978, Ion-Sensitive Intracellular Microelectrodes, How to Make and Use Them, Academic Press, London.Google Scholar
  85. Tsien, R. Y., 1980, Liquid sensors for ion-selective microelectrodes. Trends Neurosci. 3: 219–221.CrossRefGoogle Scholar
  86. Tsuchida, T., and Yoda, K., 1981, Immobilization of D-glucose oxidase onto a hydrogen peroxide permselective membrane and application for an enzyme electrode, Enzyme Microb. Technol. 3: 326–330.CrossRefGoogle Scholar
  87. Vogel, S., 1981, Life in Moving Fluids, Willard Grant, Boston.Google Scholar
  88. Ward, D. M., Beck, E., Revsbech, N. P., Sandbeck, K. A., and Winfrey, M. R., 1984, Decomposition of hot spring microbial mats, in: Microbial Mats: Stromatolites ( Y. Cohen, R. W. Castenholz, and H. O. Halvorson, eds.), pp. 191–214, Alan R. Liss, New York.Google Scholar
  89. Whalen, W. J., Riley, J., and Nair, P., 1967, A microelectrode for measuring intracellular PO2, J. Appl. Physiol. 23: 798–801.PubMedGoogle Scholar
  90. Wightman, R. M., 1981, Microvoltammetric electrodes, Anal. Chem. 53: 1125A–1130A.CrossRefGoogle Scholar
  91. Wimbush, M., 1976, The physics of the benthic boundary layer, in: The Benthic Boundary Layer ( I. N. McCave, ed.), pp. 3–10, Plenum Press, New York.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Niels Peter Revsbech
    • 1
  • Bo Barker Jørgensen
    • 1
  1. 1.Institute of Ecology and GeneticsUniversity of AarhusAarhus CDenmark

Personalised recommendations