Advertisement

Dislocations in Germanium Monocrystals (Review)

  • E. Yu. Kokorish

Abstract

Much attention has recently been given to growing highly perfect germanium monocrystals. Lattice defects in monocrystals reduce the carrier mobility, cause impurity atmosphere and space-charge effects, and increase trapping and recombination rates.

Keywords

Dislocation Density Burger Vector Zone Fusion Impurity Atom Edge Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. [1]
    F. Vogel, W. Pfann, H. Corey, and E. Thomas, Phys. Rev. 90, 489 (1953).ADSCrossRefGoogle Scholar
  2. [2]
    S. G. Ellis, J. Appl. Phys. 26, 1140 (1955).ADSCrossRefGoogle Scholar
  3. [3]
    A. J. Forty, Direct Observation of Dislocations in Crystals [Russian translation] (Moscow, 1956).Google Scholar
  4. [4]
    W. T. Read, Dislocations in Crystals (McGraw-Hill Co., N. Y., 1953).zbMATHGoogle Scholar
  5. [5]
    A. H. Cottrell, Dislocations and Plastic Flow in Crystals [Russian translation] (Moscow, 1958).Google Scholar
  6. [6]
    J. Hornstra, J. Phys. Chem. Solids 5, 129 (1958).ADSCrossRefGoogle Scholar
  7. [7]
    W. Bragg, Proc. Phys. Soc. 52, 4 (1940).CrossRefGoogle Scholar
  8. [8]
    J. Burgers, Proc. Phys. Soc. 52, 23 (1940).ADSCrossRefGoogle Scholar
  9. [9]
    J. Okada, J. Phys. Soc. Japan 10, 1018 (1955).ADSGoogle Scholar
  10. [10]
    R. Hashiguchi and E. Matsuura, J. Phys. Soc. Japan 12, 1347 (1957).ADSCrossRefGoogle Scholar
  11. [11]
    W. Pfann and L. Lovell, Acta Met. 3, 512 (1955).CrossRefGoogle Scholar
  12. [12]
    R. W. James, Optical Principles of the Diffraction of X-rays (London, 1950).Google Scholar
  13. [13]
    S. Kulin and A. Kurtz, Acta Met. 2, 354 (1956).CrossRefGoogle Scholar
  14. [14]
    A. Kurtz, S. Kulin, and B. Averbach, Phys. Rev. 101, 1285 (1956).ADSCrossRefGoogle Scholar
  15. [15]
    J. Allen, J. Electronics 23, 439 (1956).Google Scholar
  16. [16]
    S. Ellis, Coll.: Transistors. I (RCA Laboratories, 1956), p. 97.Google Scholar
  17. [17]
    S. Ellis, J. Appl. Phys. 28, 1262 (1957).ADSCrossRefGoogle Scholar
  18. [18]
    F. Vogel, Acta Met. 5, 377 (1957).CrossRefGoogle Scholar
  19. [19]
    W. Dasch, J. Appl. Phys.27, 1193 (1956).ADSCrossRefGoogle Scholar
  20. [20]
    W. Tyler and W. Dasch, J. Appl. Phys. 28, 1121 (1957).CrossRefGoogle Scholar
  21. [21]
    G. Gallagher, Phys. Rev. 88, 721 (1952).ADSCrossRefGoogle Scholar
  22. [22]
    R. Treuting, Trans. AIME 203, 1027 (1955).Google Scholar
  23. [23]
    E. Teghtsoonian and B. Chalmers, Canad. J. Phys. 29, 370 (1951).ADSCrossRefGoogle Scholar
  24. [24]
    E. Teghtsoonian and B. Chalmers, Canad. J. Phys. 30, 388 (1952).ADSCrossRefGoogle Scholar
  25. [25]
    R. Newman and W. Tyler, Phys. Rev. 96, 882 (1954).ADSCrossRefGoogle Scholar
  26. [26]
    J. Czochralski, J. Phys. Chem. 93, 219 (1918).Google Scholar
  27. [27]
    V. L. Indenbom, Kristallografiya 2, 594 (1957).Google Scholar
  28. [28]
    E. Billig, Proc. Roy. Soc. 235, 37 (1956).ADSCrossRefGoogle Scholar
  29. [29]
    H. Dorendorf, Z. angew. Phys. 9, 413 (1957).Google Scholar
  30. [30]
    A. Bennett and B. Sawyer, Bell. Syst. Tech. J. 35, 637 (1956).Google Scholar
  31. [31]
    I. Cressell and J. Powell, Progress in Semiconductors. II (London, 1956), pp. 137–164.Google Scholar
  32. [32]
    A. Kurtz, S. Kulin, and B. Averbach, J. Appl. Phys. 27, 1287 (1956).ADSCrossRefGoogle Scholar
  33. [33]
    B. Chalmers, Amer. Inst. Mining Met. Engr. 200, 519 (1954).Google Scholar
  34. [34]
    G. Pearson, W. Read, and F. Morin, Phys. Rev. 93, 666 (1954).ADSCrossRefGoogle Scholar
  35. [35]
    W. Shockley, Phys. Rev, 91, 228 (1953).CrossRefGoogle Scholar
  36. [36]
    W. Read, Phil. Mag. 775 (1954).Google Scholar
  37. [37]
    W. Read, Phil. Mag. 45, 1119 (1954).Google Scholar
  38. [38]
    W. Read, Phil. Mag. 46, 111 (1955).Google Scholar
  39. [39]
    A. Kurtz and S. Kulin, Acta Met. 2, 352 (1954).CrossRefGoogle Scholar
  40. [40]
    J. Allen, J. Electronics 1, 580 (1956).Google Scholar
  41. [41]
    J. McKelvey, Phys. Rev. 106, 910 (1957).ADSCrossRefGoogle Scholar
  42. [42]
    S. Morrison, Phys. Rev. 104, 619 (1956).ADSCrossRefGoogle Scholar
  43. [43]
    G. Wertheim and G. Pearson, Phys. Rev. 107. 694 (1957).ADSCrossRefGoogle Scholar
  44. [44]
    E. Greiner, P. Breidt, J. Hobstelter, and W. Ellis, J. Metals 9, 813 (1957).Google Scholar
  45. [45]
    N. N. Sheftal’, N. P. Kokorish, and S. Kh. Mukhonkin, Paper at the First Conference on Crystal Growth [in Russian] (Moscow, March 5–10, 1956).Google Scholar

Copyright information

© Consultants Bureau, Inc. 1959

Authors and Affiliations

  • E. Yu. Kokorish

There are no affiliations available

Personalised recommendations