Asymptotics beyond All Orders pp 1-14 | Cite as
Asymptotics, Superasymptotics, Hyperasymptotics...
Chapter
Abstract
My purpose is to describe several recent developments in our understanding of divergent series and the accurate calculation of the functions they represent. All the work has been1,2 or is being published3, so this will be an informal account, emphasising the new concepts and illustrating them with pictures.
Preview
Unable to display preview. Download preview PDF.
References
- 1.M.V. Berry, Uniform asymptotic smoothing of Stokes’s discontinuities, Proc. Roy. Soc. Lond, A422: 7–21(1989).ADSGoogle Scholar
- 2.M.V. Berry and C.J. Howls, Hyperasymptotics, Proc. Roy. Soc. Lona, A430: 653–668 (1990).MathSciNetADSCrossRefGoogle Scholar
- 3.M.V. Berry and C.J. Howls, Hyperasymptotics for integrals with saddles, submitted to Proc. Roy. Soc. Lond. (1991).Google Scholar
- 4.G.H. Hardy, “Divergent Series”, Clarendon Press, Oxford (1949).zbMATHGoogle Scholar
- 5.G.G. Stokes, On the numerical calculation of a class of definite integrals and infinite series, Trans. Comb. Phil. Soc. 9: 379–407 (1847).Google Scholar
- 6.B.G. Levi, A super time to renormalize, Physics Today, April 1988: 25.Google Scholar
- 7.Lord Kelvin, The scientific work of Sir George Stokes, Nature 67: 337–338 (1903).ADSGoogle Scholar
- 8.R.B. Dingle, “Asymptotic Expansions: their Derivation and Interpretation”, Academic Press, New York and London (1973).zbMATHGoogle Scholar
- 9.G.G. Stokes, On the discontinuity of arbitrary constants which appear in divergent developments, Trans. Camb. Phil. Soc. 10: 106–128 (1864).ADSGoogle Scholar
- 10.J.E. Littlewood, preface to ref.4.Google Scholar
- 11.N.G. de Bruijn, “Asymptotic methods in analysis”, North-Holland, Amsterdam (1958).zbMATHGoogle Scholar
- 12.M.V. Berry, Stokes’ phenomenon; smoothing a Victorian discontinuity, Publ. Math.of the Institut des Hautes Études scientifique, 68: 211 – 221 (1989).CrossRefGoogle Scholar
- 13.R. Balian, G. Parisi, and A. Voros, Discrepancies from asymptotic series and their relation to complex classical trajectories, Phys. Rev, Lett 41: 141–1144(1978).ADSGoogle Scholar
- 14.F.W.J. Olver, “Asymptotics and special functions” Academic Press, New York and London (1974).Google Scholar
- 15.M. Abramowitz and I.A. Stegun, 1964, “Handbook of mathematical functions”, National Bureau of Standards, Washington (1964).zbMATHGoogle Scholar
- 16.F.W.J. Olver, On Stokes’ phenomenon and converging factors, in “Proceedings of International Symposium on Asymptotic and Computational Analysis (Manitoba, Winnipeg 1989)”, R. Wong, ed., Marcel Dekker, New York (1990), pp329–355.Google Scholar
- 17.M.J. Rakovic, and E.A. Solov’ev, Higher orders of semiclassical expansion for the one-dimensional Schrödinger equation, Phys. Rev. A40: 6692–6694 (1989).ADSGoogle Scholar
- 18.W.G.C. Boyd, Stieltjes transforms and the Stokes phenomenon, Proc. Roy. Soc. Lond., A429: 227–246 (1990).ADSGoogle Scholar
- 19.D.S. Jones, Uniform asymptotic remainders, in “Proceedings of International Symposium on Asymptotic and Computational Analysis (Manitoba, Winnipeg 1989)” R Wong, ed., Marcel Dekker, New York (1990), pp241–264.Google Scholar
- 20.M.V. Berry, Waves near Stokes lines, Proc. Roy. Soc. Lond, A427: 265–280 (1990).ADSGoogle Scholar
- 21.M.V. Berry, Histories of adiabatic quantum transitions, Proc. Roy. Soc. Lond, A429: 61–72 (1990).ADSGoogle Scholar
- 22.R. Lim and M.V. Berry, Submitted to J.Phys.A. (1991).Google Scholar
- 23.M.V. Berry and C.J. Howls, Stokes surfaces of diffraction catastrophes with codimension three, Nonlinearity, 3:281–291 (1990).MathSciNetADSzbMATHCrossRefGoogle Scholar
- 24.J. Écalle, “Les fonctions résurgentes “(3 volumes) Publ. Math. Université de Paris-Sud (1981), and “Cinq applications des fonctions résurgentes “, Preprint 84T62, Orsay (1984).Google Scholar
- 25.A. Voros, The return of the quartic oscillator. The complex WKB method, Ann. Inst H. Poincaré, 39:211–338 (1983).MathSciNetzbMATHGoogle Scholar
- 26.P. Flagolet and A.M. Odlyzko, Singularity analysis of generating functions, SLAM J. Discrete Math., 3 (2): 216–240 (1990).CrossRefGoogle Scholar
- 27.P2C2E=processes too complicated to explain, see S. Rushdie, “Haroun and the sea of stories”, Granta, London (1990).Google Scholar
- 28.M.V. Berry, Some quantum-to-classical asymptotics, in “Chaos and quantum physics”,Les Houches Lecture Series 52, M J Giannoni and A Voros, eds. North-Holland, Amsterdam (1991).Google Scholar
- 29.M.V. Berry and J.P. Keating, A rule for quantizing chaos?, J. Phys. A., 23: 4839–4849 (1990).MathSciNetADSzbMATHCrossRefGoogle Scholar
- 30.R. Balian and C. Bloch, Solution of the Schrödinger equation in terms of classical paths, Ann. Phys. (N.Y.) 85: 514–545 (1974).MathSciNetADSzbMATHCrossRefGoogle Scholar
- 31.J. Knoll and R. Schaeffer, Semiclassical scattering theory with complex trajectories. 1. Elastic waves, Ann. Phys. (N.Y.), 97: 307 (1976).MathSciNetADSCrossRefGoogle Scholar
- 32.M.V. Berry, Infinitely many Stokes smoothings in the Gamma Function, submitted to Proc. Roy. Soc. Lond, (1990).Google Scholar
Copyright information
© Plenum Press, New York 1991