Physiology and Storage of Bulbs: Concepts and Nature of Dormancy in Bulbs

  • M. Le Nard
Part of the Nato Advanced Study Institutes Series book series (NSSA, volume 46)


Bulbous plants constitute a group of a very great diversity, as much in their geographical origin as in their biological characteristics. Moreover, the term “bulbous plants” is generally used in a very broad sense and includes plants whose vegetative multiplication organs are true bulbs, corms, rhizomes and even tubers and tuberous roots.


Flower Differentiation Physiological Evolution Dormancy Release Aerial Organ Tulip Bulb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. S. Haber, A preliminary report on the stimulation of growth of bulbs and seeds with ethylene. Proc Amer. Soc. Hort. Sci., 23, 201 (1926).Google Scholar
  2. 2.
    F. E. Denny, Shortening the rest period of Gladiolus by treatment with chemicals. Contr. Boyce Thompson Inst., 2, 523 (1930).Google Scholar
  3. 3.
    N. W. Stuart, S. Asen and C. J. Gould, Accelerated flowering of bulbous iris after exposure to ethylene. Hort. Science, 1, 19 (1966).Google Scholar
  4. 4.
    W. J. de Munk, “Some disorders in tulips due to storage conditions and ethylene.” Thesis L.B.O. Lisse, Netherlands (1973).Google Scholar
  5. 5.
    M. Masuda and T. Asahira, Effect of ethylene on breaking dormancy of freesia corms. Scientia Hortic, 13, 85 (1980).Google Scholar
  6. 6.
    O. N. Purvis, Recent Dutch research on the growth and flowering of bulbs. I. The temperature requirements of hyacinths. Scient. Hortic., V, 127 (1937).Google Scholar
  7. 7.
    O. N. Purvis, Recent Dutch research on the growth and flowering of bulbs. II. The temperature requirements of tulips and daffodils. Scient. Hortic., VI, 160 (1938).Google Scholar
  8. 8.
    F. W. Went, Thermoperiodicity, in “Vernalization and photoperiodism,” Murneek, A.E. and White R.O., 145, Chronica Botanica Co., Waltham, Massachusetts, U.S.A. (1948).Google Scholar
  9. 9.
    P. Chouard, “Dormances et inhibitions des graines et des boureons, Préparation au forcage. Thermopériodisme.” Cours du C.A.M., C.D.U., Paris (1951).Google Scholar
  10. 10.
    A. H. Hartsema, Storage of bulbs. Bull. Inst. Intern. du Froid, Annexe I, 115 (1954).Google Scholar
  11. 11.
    A. H. Hartsema, Influence of temperatures on flower formation and flowering of bulbous and tuberous plants, in : “Handbuch der Pflanzenphysiologie,” 16, 123 W. Ruhland (ed.) Springer Verlag, Berlin (1961).Google Scholar
  12. 12.
    J. P. Nitsch, Physiology of flower and fruit development, in : “Handbuch der P.flanzenphysiologie,” 15, 1 1537; W. Ruhland (ed.), Springer Verlag, Berlin (1965).Google Scholar
  13. 13.
    A. Vegis, Die Bedeutung von physikalischen und chemischen Aussenfaktoren bei der Induktion and Beeindigung von Ruhezuständen bei Organen und Geweben höherer Pflanzen, in : Handbuch der Pflanzenphysiologie,” 15, 2, 534; W. Ruhland (ed.), Springer Verlag, Berlin (1965).Google Scholar
  14. 14.
    A. R. Rees, The physiology of ornamental bulbous plants. Bot. Rev., 32, 1 (1966)Google Scholar
  15. 15.
    A. R. Rees, “The growth of bulbs.” Academic Press, London (1972).Google Scholar
  16. 16.
    R. Mulder and I. Luyten, De periodieke ontwikkeling van de Darwin-tulp. Verh. Kon. Akad. Wet. (Sectie II), 26, 3, 1 (1928)Google Scholar
  17. 17.
    A. R. Rees, The initiation and growth of tulip bulbs. Ann. Bot., 32, 125, 69(1968).Google Scholar
  18. 18.
    J. Schoub and A. A. de Hertogh, Growth and development of the shoot, roots and central bulblet of Tulipa gesneriana L. cv. Paul Richter during standard forcing. J. Amer. Soc. Hort. Sci., 100, 1, 32 (1975).Google Scholar
  19. 19.
    M. Le Nard, Incidence de séquences de hautes et basses températures sur la différenciation des bourgeons, 1’enracinement et la bulbification de la tulipe. Ann Amélior. Plantes, 22, 1, 39 (1972).Google Scholar
  20. 20.
    M. Le Nard, Effects of duration of high temperature treatment on subseuqent flower differentiation, rooting and flowering of tulip bulbs. Acta Hortic, 109, 65 (1980).Google Scholar
  21. 21.
    J. J. Beijer, De terminologie van de bloemaanleg der bloembolge-wassen. Meded. Landbouwhogesch. Wageningen, 46, 5, 1 (1942)Google Scholar
  22. 22.
    M. Le Nard, Influence de différents traitements thermiques sur l’intensité de l’induction de la bulbification et sa suppression chez le bulbe de tulipe. Ann Amelior. Plantes, 30, 4, 455 (1980).Google Scholar
  23. 23.
    M. Le Nard, La différenciation florale chez la tulipe et l’iris bulbeux ; Relations entre floraison et bulbification. Sélectionneur fr., 23, 33 (1977).Google Scholar
  24. 24.
    M. Le Nard and J. Cohat, Influence des températures de conservation des bulbes sur l’elongation, la floraison et la bulbification de la tulipe (Tulipa gesneriana L.) Ann. Melior. Plantes, 18, 2, 181 (1968).Google Scholar
  25. 25.
    A. H. Hartsema and I. Luyten, Over het blindstoken van tulpen. Meded. Landbouwhogesch., Wageningen, 50, 1 (1950).Google Scholar
  26. 26.
    A. R. Rees, The effect of high-temperature treatment of tulip bulbs (“blindstoken”) on flowering and bulb yield. Rep. Glass-house Crops Res. Inst. 61 (1967).Google Scholar
  27. 27.
    T. Aoba, Effect of temperature on bulb and tuber formation in bulbous and tuberous crops. IX. On the bulb formation in tulip. Bull. Yamagata Univ. Agr. Sci., 7, 3, 387 (1976).Google Scholar
  28. 28.
    R. Moe and A. Wickstrom, Effect of precolling at 5 or — 1°C on shoot growth, flowering and carbohydrate metabolism in tulip bulbs. Scientia Hortic, 10, 187 (1979)Google Scholar
  29. 29.
    M Le Nard, Studies on the possibility of delaying flowering of tulip. Acta Hortic, 47, 251 (1975).Google Scholar
  30. 30.
    M. Le Nard, Influence d’un traitement à température élevée appliquée après une conservation des bulbes à température basse sur 1’élongation de la hampe florale de la tulipe. Ann Melior. Plantes, 30, 4, 469 (1980).Google Scholar
  31. 31.
    J. McD. Gilford and A. R. Rees, Growth of the tulip shoot, Scientia Hortic. 1, 143 (1973)Google Scholar
  32. 32.
    A. A. de Hertogh, Principles for forcing tulips, hyacinths, daffodils, easter lilies and dutch irises. Scientia Hortic, 2, 313 (1974).Google Scholar
  33. 33.
    M. Le Nard, Travaux sur tulipe, iris bulbeux et narcisse, in : “Recherches sur les plantes florales à bulbes en France,” 10, I.T.I.H. (ed.) Paris (1978).Google Scholar
  34. 34.
    A. H. Blaauw, De periodieke ontwikkeling van een bol-iris (Iris xiphium praecox “Imperator”). Verh. Kon. Akad. Wet. (Sectie 2), 34, 3, 1 (1935).Google Scholar
  35. 35.
    J. J. Beijer, Experiments on the retardation of Dutch Irises. Acta bot. neerl., 1, 268 (1952).Google Scholar
  36. 36.
    W. J. de Munk, All year round culture of dutch irises. Ann. Rept. Jersey Bulb and Flower Grower Assoc, St. John, Jersey (1966).Google Scholar
  37. 37.
    G. A. Kamerbeek, Temperature treatment of dutch iris bulbs in relation to the development. Rep. 1st Intern. Symposium on iris, Florence, May 14–18, 1963, 459 (1965).Google Scholar
  38. 38.
    G. A. Kamerbeek, Influence of light, temperature and other factors on bud blast of dutch irises. Proc 17th Int. Hort. Congress, vol. 1, 233 (1966).Google Scholar
  39. 39.
    G. A. Kamerbeek, Influence of light and temperature on flower-bud development in bulbous irises (iris cv. “Wedgwood”) and lilies (lilium cv. “Enchantement”). Acta Hortic, 14, 175 (1969).Google Scholar
  40. 40.
    E. J. Fortanier and A. Zevenbergen, Analysis of the effects of temperature and light after planting on bud blasting in iris hollandica. Neth. J. agr. Sci., 21, 145 (1973).Google Scholar
  41. 41.
    T. Mae and C. R. Vonk, Effect of light and growth substances on flowering of iris x hollandica cv.”Wedgwood.” Acta Bot. Neerl., 23, 3, 321 (1974).Google Scholar
  42. 42.
    M. Le Nard, Influence de la température de conservation de bulbes sur la différenciation d’organes aériens, leur elongation et la bulbification chez l’iris bulbeux hollandais, var. “Wedgwood.” Ann. Amélior. Plantes, 23 3, 265 (1973).Google Scholar
  43. 43.
    T. Aoba, Effect of temperature on bulb-and tuber formation in bulbous and tuberous crops. VI. On the bulb formation in bulbous iris. J. Japan. Soc Horti. Sci., 43, 3, 273 (1974)Google Scholar
  44. 44.
    G. A. Kamerbeek and J. J. Beijer, Vroege bloei van iris “Wedg-wood.” Meded. Dir. Tuiub., 27, 598 (1964).Google Scholar
  45. 45.
    Y. Kimura and N. W. Stuart, Exponential nature of heat exposure duration relative to temperature change in the curing and flowering of bulbous iris. J. Amer. Soc. Hort. Sci. 97, 3, 424 (1972).Google Scholar
  46. 46.
    I. Walla and T. Kristoffersen, Some factors affecting the result of early forcing of iris x hoolandica “Wedgwood.” Acta Hortic., 14, 187 (1969).Google Scholar
  47. 47.
    M. Le Nard, Bulbing and flowering of iris bulbs stored at different temperatures before a cold treatment. Acta Hortic., 109 141 (1980).Google Scholar
  48. 48.
    J. Uhring, Morphological studies of flower bud initiation and development in bulbous iris stored at various temperatures. J. Amer. Soc. Hort. Sci., 98, 1, 54 (1973)Google Scholar
  49. 49.
    N. W. Stuart, C. J. Gould, W. E. Vassey and M. Hickman, Heat-curing, cool storing speed flowering of Wedgwood iris. Florists’ Review 132. 3425 (1966).Google Scholar
  50. 50.
    C. J. Gould, N. W. Stuart and T. Sabelis, Suggestions and omments on forcing Washington-grown iris in greenhouse in he U.S. FloristsReview, 154, 3996, 33 (1974).Google Scholar
  51. 51.
    A. J. B. Durieux, Bloei van hollandse irissen. Praktijkmededelin no 44, L.B.O. Lisse, Netherlands (1975).Google Scholar
  52. 52.
    A. H. Hartsema, De Periodieke ontwikkeling van gladiolus hybridu var. “Vesuvius,” Verh. Kon. ned. Akad. Wet. Natuurk., Sectie II, 36, 3, 1 (1937)Google Scholar
  53. 53.
    G. F. Ryan, Effects of temperature on rest in gladiolus corms. Proc. Amer. Soc. Hortic. Sci., 65, 463 (1955).Google Scholar
  54. 54.
    S. S. Apte, Dormancy and sprouting in gladiolus. Meded. Land-bouwhogesch. Wageningen, 62, 5, 1 (1962).Google Scholar
  55. 55.
    C. Ginzburg, Hormonal regulation of cormel dormancy in Gladiolus grandiflorus. J. Exp. Bot. 24, 80, 558 (1973).Google Scholar
  56. 56.
    Y. Tsukamoto and H. Konoshima, Changes in endogenous growth regulators in the gladiolus corm during dormancy. Physiol. Plant., 26, 244 (1972)Google Scholar
  57. 57.
    H. Konoshima and Y. Tsukamoto, Effect of light conditions on the dormancy of gladiolus corms. J. Jap. Soc. Hort. Sci., 45, 4, 414 (1977).Google Scholar
  58. 58.
    D. C. Fairburn, Growth responses of the gladiolus as influenced by storage temperatures. Iowa Agric. Exp. Stn. Res. Bull., 170, 95 (1934).Google Scholar
  59. 59.
    F. E. Denny and L. P. Miller, Storage temperatures and chemical treatments for shortening the rest period of small corms and cormels of gladiolus. Contr. Boyce Thompson Inst., 7, 257 (1935).Google Scholar
  60. 60.
    F. E. Denny, Storage temperatures for shortening the rest period of gladiolus corms. Contr. Boyce Thompson Inst., 8, 137 (1936).Google Scholar
  61. 61.
    F. E. Denny, Prolonging, then breaking the rest period of gladiolus corms. Contr. Boyce Thompson Inst., 9, 403 (1938)Google Scholar
  62. 62.
    F. E. Denny, Effects of a few hours chilling upon germination of gladiolus corms subjected to an artificially prolonged rest period. Contr. Boyce Thompson Inst., 12, 375 (1942).Google Scholar
  63. 63.
    A. Paulin, Etude de l’action de traitements thermiques ou chimiques sur les cormus de glaïeuls en vue de hatêr leur floraison. C.R. Acad. Agric. Fr., 47, 953 (1961).Google Scholar
  64. 64.
    J. Cohat, La production des bulbes chez le glaieul. Pep. Hort. Mar., 122, 23 (1971).Google Scholar
  65. 65.
    A. Paulin, Etude de l’action de températures élevées sur les cormus de glaïeuls en vue de hâter la floraison. Proc 15th Intern. Hortic. Cong., II, 422 (1958)Google Scholar
  66. 66.
    A. Paulin, Etude de l’action de températures élevées sur les connus de glaïeuls en vue de hâter la floraison. Rev. hortic., 3, 1921 (1958).Google Scholar
  67. 67.
    J. Cohat and M. Le Nard, Influence des températures de conservation des connus de glaieul sur la précocité de floraison et le grossissement du nouveau connus. Ann. Amélior. Plantes, 18, 3 287 (1968).Google Scholar
  68. 68.
    J. Cohat, Contribution a l’étude de la tubérisation du glaieul d’été (Gladiolus grandiflorus Hort.). Ann. Amélior. Plantes, 24, 1, 13 (1924).Google Scholar
  69. 69.
    T. Aoba, Effect of temperature on bulb-and tuber formation in bulbous and tuberous crops. VIII. On the corm formation in gladiolus. J. Yamagata Agr. For. Soc, 32, 48 (1975).Google Scholar
  70. 70.
    T. Asahira, H. Imanishi and Y. Tsukamoto, Studies on the cornel formation in gladiolus. Mem. Coll. Agric. Kyoto Univ., 93, 21 (1968).Google Scholar
  71. 71.
    J. Cohat, Influence de la densité de plantation et de la température de conservation des connus de semence sur le résultat de la culture de grossissement chez le glaieul. Documentation Bulbes, n° 5, 27 (1977).Google Scholar
  72. 72.
    G. A. Kamerbeek, J. C. M. Beijersbergen and P. K. Schenk, Dormancy in bulbs and corms. Proc. 18th Intern. Hortic. Congr., vol. 5, 233 (1972).Google Scholar
  73. 73.
    R. D. Amen, A model of seed dormancy. Bot Rev.,, 34, 1 (1968).Google Scholar
  74. 74.
    S. Yazawa, The action mechanism of cytokinin in breaking dormancy of gladiolus corm. Sci Rep. Kyoto Prefect. Univ. Agric, 28, 40 (1976).Google Scholar
  75. 75.
    T. C. Moore, “Biochemistry and physiology of plant hormone” (p. 181–182), Springer Verlag, New York (1979).Google Scholar
  76. 76.
    Y. Tsukamoto and T. Ando, The change of amount of inhibitors inducing dormancy in dutch iris bulb. Proc Japan. Acad., 49, 627 (1973).Google Scholar
  77. 77.
    Y. Tsukamoto, Changes in endogenous regulators and dormancy in bulbous plants. Proc. 19th Intern. Hortic. Congr. 293 (1974).Google Scholar
  78. 78.
    T. Aoba, Effect of temperature on bulb-and tuber formation in bulbous and tuberous crops. III. Effect of the heat treatment on the pupa formation in freesia. J. Japan. Soc. Hort. Sci., 42, 4, 341 (1974).Google Scholar
  79. 79.
    T. Aoba, Effect of temperature on bulb-and tuber formation in bulbous and tuberous crops. IV. On the pupa formation in freesia corms at various states of dormancy. J. Japan Soc. Hort. Sci., 43, 1, 69 (1974).Google Scholar
  80. 80.
    W. G. Burton, The dormancy and sprouting of potatoes. Fd. Sci. Abstracts, 29, 1 (1957).Google Scholar
  81. 81.
    W. G. Burton, Concepts and mechanism of dormancy in : “The growth of the potato,” Butterworth, London, 17 (1963).Google Scholar
  82. 82.
    L. Rappaport and N. Wolf, The problem of dormancy in potato tubers and related structures. Symp Soc. Exp. Biol., 23 219 (1969).PubMedGoogle Scholar
  83. 83.
    W. G. Burton, Post-harvest behaviour and storage of potatoes, in; “Applied Biology,” Vol. III, Academic Press, London, 86 (1978).Google Scholar
  84. 84.
    P. Madex and P. Pérennec, Levée de dormance de tubercules de pomme de terre d’âge différent : action de la rindite, de la gibberelline et de loeilletonnage. Eur. Potato J., 12 96 (1969.Google Scholar
  85. 85.
    K. M. Bailey, I. D. J. Philips and D. Pitt, The role of buds and gibberellin in dormancy and the mobilization of reserve materials in potato tubers. Ann. Bot., 42, 649 (1978).Google Scholar
  86. 86.
    F. E. Denny and L. P. Miller, Hastening the germination of dormant gladiolus cormels with vapors of ethylene chlorhydrin. Contr. Boyce Thompson Inst., 6, 31 (1934).Google Scholar
  87. 87.
    O. D. K. Bautista and T. G. Cadiz, Breaking the dormancy of gladiolus. Philippine Agric, 48, 288 (1964)Google Scholar
  88. 88.
    A. H. Halevy, R. Shilo and S. Simchon, Effect of 2-chloroethane-phosphonic acid (Ethrel) on health, dormancy, and flower and corm yield in gladioli. J. Hort. Sci., 45, 427 (1970).Google Scholar
  89. 89.
    S. Nakamura and S. Yoshida, Studies on the dormancy of bulbs and corms. I. Freesia, iris and gladiolus. Bull. Fac. Agric. Yama- gata Univ., 24, 591 (1973).Google Scholar
  90. 90.
    C. Ginzburg, Studies on the role of ethylene in gladiolus cormel germination. Plant Sci. Lett., 2, 133 (1974).Google Scholar
  91. 91.
    Y. Tsukamoto, Breaking dormancy in the gladiolus corm with cytokins. Proc. Jap. Acad., 48 34 (1972).Google Scholar
  92. 92.
    Y. Tsukamoto, Breaking dormancy of gladiolus corms and inhibitors inducing dormancy. Acta Hortic., 43, 393 (1974)Google Scholar
  93. 93.
    H. Konoshima, S. Yazawa and Y. Tsukamoto, Inhibitors concerned in the dormancy of the gladiolus corm. J. Jap. Soc. Hort. Sci., 42, 1, 35 (1973).Google Scholar
  94. 94.
    A. H. Halevy, S. Simchon and R. Shilo, Changes in “free” and two forms of “bound” gibberellins in the various stages of dormancy of gladiolus corms, in : “Plant growth substances,” Hirokawa Pub. Co. Inc., Tokyo, 64 (1973).Google Scholar
  95. 95.
    A. J. B. Durieux and G. A. Kamerbeek, The prevention of “three leaved” plants in the forcing of iris x hollandica by early heat treatment of stored bulbs by ethephon field spraying. Scientia Hortic., 2, 101 (1974).Google Scholar
  96. 96.
    G. A. Kamerbeek, A. J. B. Durieux and J. A. Schipper, An analysis of the influence of ethrel on flowering of iris “Ideal”; an associated morphogenetic physiological approach. Acta Hortic., 109, 235 (1980).Google Scholar
  97. 97.
    A. S. Rodrigues Pereira, Flower initiation in excised stem disk of Wedgwood iris. Science, 134, 2044 (1961).PubMedGoogle Scholar
  98. 98.
    A. S. Rodrigues Pereira, Physiological experiments in connection with flower formation in Wedgwood iris (Iris, cv. “Wedgwood”). Acta Bot., neerl., 11, 97 (1962).Google Scholar
  99. 99.
    A. S. Rodrigues Pereira, Endogenous growth factors and flower formation in Wedgwood iris bulbs. Acta Bot. neerl., 13, 303 (1964).Google Scholar
  100. 100.
    A. S. Rodrigues Pereira, Physiological analysis of flower formation in Wedgwood iris. J. Exp. Bot., 16, 48, 405 (1965).Google Scholar
  101. 101.
    L. H. Aung and A. A. de Hertogh, The occurrence of gibberellin-like substances in tulip bulbs (Tulipa sp.). Pl. Cell. Physiol. Tokyo, 8, 201 (1967)Google Scholar
  102. 102.
    L. H. Aung and A. A. de Hertogh, Temperature regulation of growth and endogenous abcissic acid-like content of Tulipa gesneriana L. Plant Physiol., 63, 1111 (1979).PubMedGoogle Scholar
  103. 103.
    L. H. Aung and A. R. Rees, Changes in endogenous gibberellin levels in Tulipa bulblets during ontogeny. J. Exp. Bot., 25, 87, 745 (1974).Google Scholar
  104. 104.
    A. E. Einert, G. L. Staby and de Hertogh A. A., Gibberellin-like activity from organs of Tulipa gesneriana. Can. J. Bot., 50, 5, 909 (1972)Google Scholar
  105. 105.
    G. R. Hanks and A. R. Rees, Growth substances of tulip ; the activity of gibberellin-like substances in field-grown tulips from planting until flowering. Z. Pflanzenphysiol. 98, 3, 213 (1980).Google Scholar
  106. 106.
    G. Syrtanova and I. Rakhimbaev, Endogenous gibberellins during dormancy and growth of tulip bulbs. Fiziologiya Rastenii, 20, 4, 721 (1973).Google Scholar
  107. 107.
    G. Syrtanova, I. Rakhimbaev and V. I. Kefeli, A natural growth inhibitor of tulip. Fiziologiya Rastenii, 22, 1, 165 (1975).Google Scholar
  108. 108.
    H. Ito, T. Kato and T. Toyoda, Metabolism of tulip bulbs as related to thermoperiodicity. J. Jap. Soc. Hort. Sci., 29, 323 (1960).Google Scholar
  109. 109.
    S. Y. Wang and A. N. Roberts, Physiology of dormancy in Lilium longiflorum “Ace” Thunb. J. Amer. Soc. Hort. Sci., 95, 5, 554 (1970).Google Scholar
  110. 110.
    Y. Tsukamoto, Changes of endogenous growth substances in Easter lily as affected by cooling. Acta Hortic., 23, 75 (1971).Google Scholar
  111. 111.
    T. Kato, Physiological studies on the bulbing and dormancy of onion plants. VII. Effects of some environmental factors and chemicals on the dormant process of bulbs. J. Jap. Soc. Hort. Sci., 35, 49 (1966).Google Scholar
  112. 112.
    T. Kato, Physiological studies on the bulbing and dormancy of onion plants. VIII. Relations between dormancy and organic constituents of bulbs. J. Jap. Soc. Hort. Sci., 35, 142 (1966).Google Scholar
  113. 113.
    T. Kato, Physiological studies on the bulbing and dormancy of onion plants. IX. The relationship between bulb dormancy and the components of the juice. J. Jap. Soc. Hort. Sci., 35, 297 (1966).Google Scholar
  114. 114.
    T. Kato, Physiological studies on the bulbing and dormancy of onion plants. X. A germination inhibitor in onion juice. J. Jap. Soc. Hort. Sci., 35, 395 (1966).Google Scholar
  115. 115.
    R. M. Rudnicki, Hormonal control of growth and development of hyacinth. Acta Hortic, 91, 185 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • M. Le Nard
    • 1
  1. 1.Station d’Amélioration de la Pomme de terre et des Plantes à bulbesInstitut National de la Recherche AgronomiqueLanderneauFrance

Personalised recommendations