Recombinant Genetic Approaches for Efficient Ethanol Production

  • H. W. Stokes
  • S. K. Picataggio
  • D. E. Eveleigh


Ethanol has potential use as an alternative liquid transportation fuel and as a chemical feedstock. The recent restrictions on the availability of oil focused attention on ethanol production through the microbial fermentation of biomass. The economic incentives to develop such fermentation processes are borderline. This paper discusses the manner in which recombinant genetic approaches may potentially relieve certain of the economic bottlenecks and put the fermentative production of ethanol on a firmer basis. It then reviews the genetics of bacteria and yeasts. The manner in which these processes may be used is illustrated with protocols for the development of new microbial strains that can utilize a range of less expensive substrates (cellulose and starch) and that are more tolerant of high ethanol concentrations.


Ethanol Production Pyruvate Decarboxylase High Ethanol Concentration Hybrid Plasmid Fuel Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A H. Rose. 1977. In Economic microbiology: Alcoholic beverages. Vol. 1. Edited by A. H. Rose. New York: Academic Press, pp. 1–44.Google Scholar
  2. 2.
    J. Bulock. 1978. In Microbial technology: Current state, future prospects. Twenty-ninth Symposium of the Society for General Microbiology, U.K. Edited by A. T. Bull, D. C. Eliwood and C. Ratledge. Cambridge: Cambridge University Press, pp. 309–325.Google Scholar
  3. 3.
    N. Kosaric; D. C. M. Ng; I. Russell; and G. S. Stewart. 1980. Adv. Appl. Microbiol. 26:147–227.Google Scholar
  4. 4.
    D. M. Munnecke. 1981. In Bio mass conversion processes for energy and fuels. Edited by S. S. Sofer and O. R. Zaborsky. New York: Plenum, pp. 339–355.Google Scholar
  5. 5.
    R. C. Righelato. 1980. Phil. Trans. R. Soc. Lond. B 290:303–312.Google Scholar
  6. 6.
    K. Venkatasubramanian and C. R. Keim. 1981. Ann. New York Acad. Sei. 369:187–204.Google Scholar
  7. 7.
    National Alcohol Fuels Commission. 1981. Fuel alcohol, an alternative for the 1980s. Final report GPO. Washington, D.C.Google Scholar
  8. 8.
    R. S. Chambers; R. A. Herendeen; J. J. Joyce; and P. S. Penner. 1979. Science 206:789–795.Google Scholar
  9. 9.
    D. Brandt. 1981. In Biomass conversion processes for energy and fuels. Edited by S. S. Sofer and O. R. Zaborsky. New York: Plenum, pp. 357–373.Google Scholar
  10. 10.
    H. W. Doelle. 1915. Bacterial metabolism. 2ded. New York: Academic Press.Google Scholar
  11. 11.
    G. Gottschalk. 1978. Bacterial metabolism. 1st ed. New York: Springer-Verlag.Google Scholar
  12. 12.
    A. Margaritis and C. R. Wilke. 1978.Biotech. Bioeng. 20:709.Google Scholar
  13. 13.
    K. J. Lee; M. Lefebvre; D. E. Tribe; and P. L. Rogers. 1980. Biotech. Letters 2:487–492.Google Scholar
  14. 14.
    R. Maleszka; I. A. Veliky; and H. Schneider. 1981. Biotech. Letters 3:415–420.Google Scholar
  15. 15.
    I. G. Prince and J. P. Barford. 1982.Biotech. Letters. 4:263–268.Google Scholar
  16. 16.
    M. L. Skotnicki; K. J. Lee; D. E. Tribe; and P. L. Rogers. 1982. “Genetic engineering of microorganisms for chemicals.” Basic Life Sciences 19:271–290.Google Scholar
  17. 17.
    Alcon Biotechnology Ltd. 1982. Portsmouth, U.K. Brochure.Google Scholar
  18. 18.
    T. K. Ghose and R. D. Tyagi. 1979.Biotech. Bioeng. 21:1387–1400.Google Scholar
  19. 19.
    P. L. Rogers; K. J. Lee; M. L. Skotnicki; and D. E. Tribe. 1981. In Advances in biotechnology. Vol. 2. Edited by M. Moo-Young and C. W. Robinson. Toronto: Pergamon Press, pp. 189–194.Google Scholar
  20. 20.
    M. Wada; J. Kato; and I. Chibata. 1981. Europ. J. Appl. Microbiol. Biotechnol. 11:67–71.Google Scholar
  21. 21.
    Y-Y. Linko; H. Jalanka; and P. Linko. 1981. Biotech. Letters 3:263–268.Google Scholar
  22. 22.
    W. Grote; K. J. Lee; and P. L. Rogers. 1980. Biotech. Letters 2:481–486.Google Scholar
  23. 23.
    E. J. Arcuri; R. M. Worden; and S. E. Shumate II. 1980. Biotech. Letters 2:499–504.Google Scholar
  24. 24.
    A. Margaritis; P. K. Bajpai; and J. B. Wallace. 1981. Biotech. Letters 3:613–618.Google Scholar
  25. 25.
    G. Amin and H. Verachten. 1982. Europ. J. Appl. Microbiol. Biotechnol. 14:59–63.Google Scholar
  26. 26.
    A. Ramalingham and R. K. Finn. 1977.Biotechnol. Bioeng. 19:583–589.Google Scholar
  27. 27.
    B. Maiorell and C. R. Wilke. 1980.Biotechnol. Bioeng. 22:1749–1751.Google Scholar
  28. 28.
    J. H. Lee; J. C. Woodward; R. J. Pagan; and P. L. Rogers. 1981. Biotech. Letters 3:177–182.Google Scholar
  29. 29.
    M. Bacila and J. Horii. 1979. TIBS. 4:59–61.Google Scholar
  30. 30.
    G. Moulin; H. Boze; and P. Galzy. 1982. J. Ferment. Technol. 60:25–29.Google Scholar
  31. 31.
    H. W. Doelle. 1982. Europ. J. Appl. Microbiol. Biotechnol. 14:241–246.Google Scholar
  32. 32.
    S. Cromie and H. W. DoeUe. 1982.Europ. J. Appl. Microbiol. Biotechnol. 14:69–73.Google Scholar
  33. 33.
    S. S. Dills; A. Apperson; M. R. Schmidt; and M. H. Daier, Jr. 1980. Microbiol. Revs. 44:385–418.Google Scholar
  34. 34.
    A. H. Romano; J. D. Trifone; and M. Brustolon. 1979. J. Bacteriol. 139:9–97.Google Scholar
  35. 35.
    H. W. Doelle. 1972.Biochim. Biophys. Acta. 258:404.Google Scholar
  36. 36.
    D. I. C. Wang; I. Biocic; H. S. Fang; and J. D. Wang. 1979. Proceedings of the Third Annual Biomass Energy Systems Conference. Springfield. Va.: National Technical Information Service, and personal communication.Google Scholar
  37. 37.
    J. G. Zeikus and T. K. Ng. 1982. Ann. Reports Ferment. Processes 5:263–289.Google Scholar
  38. 38.
    H. Schneider; P. Y. Wang; Y. K. Chan; and R. Maleska. 1981. Biotech. Letters 3:89–92.Google Scholar
  39. 39.
    P. J. Slininger; R. J. Bothast; J. E. Van Cauwen- berg; and C. P. Kurzman. 1982.Biotech. Bioeng. 24:371–384.Google Scholar
  40. 40.
    T. W. Jeffries, 1981. Biotech. Letters 3:213–218.Google Scholar
  41. 41.
    C. S. Gong; L. D. McCracken; and G. T. Tsao. 1981. Biotech. Letters 3:24–50.Google Scholar
  42. 42.
    R. Maleszka; P. Y. Yang; and H. Schneider. 1982. Can. J. Biochem. 60:144–151.Google Scholar
  43. 43.
    R. W. Armentrout and R. D. Brown. 1981. Appl Environment. Microbiol. 41:1355–1362.Google Scholar
  44. 44.
    D. J. Whittle; D. G. Kilbum; R. A. J. Warren; and R. C. Miller, Jr. 1982. Gene 17:139–145.Google Scholar
  45. 45.
    H.J.J. Van Vuuren and L. Meyer, 1982. Biotech. Letters 4:253–256.Google Scholar
  46. 46.
    K. Holland. 1980. Unpublished observations.Google Scholar
  47. 47.
    S. W. Brown and S. G. Oliver. 1982. Biotech. Letters 4:269-274.Google Scholar
  48. 48.
    L. G. Ljundahl; F. Bryant; L. Carreira; T. Saki; and J. Weigel. 1981. Trends in the biology offermentation for fuels and chemicals. Edited by A. Hollander. New York: Plenum Press.Google Scholar
  49. 49.
    S. Aiba; M. Shoda; and M. Nagatani. 1968. Biotech. Bioeng. 10:845–864.Google Scholar
  50. 50.
    S. L. Chen. 1981. Biotech. Bioeng. 23:1827–1836.Google Scholar
  51. 51.
    S. Hayashida; D. D. Feng; and M. Hongo. 1974. Agric. Biol. Chem. 38:2001–2006.Google Scholar
  52. 52.
    J. Burrell. 1981. Unpublished observations.Google Scholar
  53. 53.
    T. W. Nagodawithana and K. H. Steinkraus. 1916. Appl. Microbiol. 31:158–162.Google Scholar
  54. 54.
    J. M. Navarro and G. Durand. 1978. Ann. Microbiol. Inst. Pasteur. 129B:215–225.Google Scholar
  55. 55.
    D. S. Thomas and A. H. Rose. Arch. Mikrobiol. 1979. 122:49–55.Google Scholar
  56. 56.
    G. K. Hoppe and G. S. Hansford, 1982. Biotech. Letters 4:39–44.Google Scholar
  57. 57.
    S. W. Brown; S. G. Oliver; D. E. F. Harrison; and R. C. Righelato. 1981. Europ. J. Appl. Microbiol. Biotechnol. 11:151–155.Google Scholar
  58. 58.
    L. O. Ingram. 1982. Seminar.Google Scholar
  59. 59.
    M. Ciriacy. 1975. Mutation Res. 29:315–326.Google Scholar
  60. 60.
    C. Wills; P. Kratofil; D. Londo; and T. Martin. 1981. Arch. Biochem. Biophys. 210:775–785.Google Scholar
  61. 61.
    V. M. Williamson; E. T. Young; and M. Ciriacy. 1981. Cell 23:605–614.Google Scholar
  62. 62.
    O. T. Avery; C. M. McLeod; and M. McCarty. 1944. J. Exp. Med. 79:137–158.Google Scholar
  63. 63.
    P. E. Young and J. Spizizen. 1961. J. Bact. 81:823–829.Google Scholar
  64. 64.
    S. N. Cohen; A. C. Y. Chang; and L. Hsu. 1972. Proc. Nat. Acad. Sei. (USA) 69:2210–2214.Google Scholar
  65. 65.
    M. J. Sinclair and A. F. Morgan. 1978. Aust. J. Biol. Sei. 31:769–688.Google Scholar
  66. 66.
    M. Susskind and D. Botstein. 1978.Microbiol. Rev. 42:385.Google Scholar
  67. 67.
    N. D. Zinder and J. Lederberg. 1952. J. Bact. 64:619.Google Scholar
  68. 68.
    M. L. Morse; E. M. Lederberg; and J. Lederberg. 1956.Genetics 41:142.Google Scholar
  69. 69.
    B. W. Holloway. 1969. Bact. Rev. 33:419–443.Google Scholar
  70. 70.
    E. M. Lederberg and S. N. Cohen. 1974. J. Bact. 119:1072.Google Scholar
  71. 71.
    J. Swings and J. DeLey. 1911. Bact. Rev. 41:1–46.Google Scholar
  72. 72.
    H. W. Stokes and E. L. Dally. 1982. Unpublished observation.Google Scholar
  73. 73.
    F. Jacob and E. L. Wollman. 1961. Sexuality and the Genetics of Bacteria. New York: Academic Press.Google Scholar
  74. 74.
    P. M. Chandler and V. Krishnapillai. 1974. Genet. Res. 23:239–250.Google Scholar
  75. 75.
    D. Haas and B. W. Holloway. 1976.Molec. Gen. Genet. 144:243–251.Google Scholar
  76. 76.
    B. W. Holloway. 1979. Plasmid 2:1–19.Google Scholar
  77. 77.
    M. L. Skotnicki; D. E. Tribe: and P. L. Rogers. 1980. Appl. Env. Microbiol. 40:7–12.Google Scholar
  78. 78.
    P. Starlinger. 1980. Plasmid 3:241–259.Google Scholar
  79. 79.
    N. Kleckner; J. Roth; and D. Botstein. 1977. J. Mol. Biol. 116:125–159.Google Scholar
  80. 80.
    S. Harayama; T. Masataka; and T. Lino. 1981. Mol. Gen. Genet. 184:52–55.Google Scholar
  81. 81.
    E. L. Dally. 1982. M. S. Thesis. Rutgers University.Google Scholar
  82. 82.
    S. Baumberg; G. Cornelius; M. Panagiotakopoulos; and M. Roberts. 1980. J. Gen. Microbiol. 119:257–262.Google Scholar
  83. 83.
    M. Sato; B. J. Staskamicz; N. J. Panopoulos; S. Peters; and M. Honma. 1981. Plasmid 6:325–331.Google Scholar
  84. 84.
    R. L. Sinsheimer. Ann. Rev. Biochem. 1977. 46: 415–438.Google Scholar
  85. 85.
    H. V. Bernard and D. R. Helinski. 1980. Genetic engineering. Vol 2. New York: Plenum Press, pp. 133–167.Google Scholar
  86. 86.
    G. Ditta; S. Stanfield; D. Corbin; and D. R. Helinski. 1980. Proc. Natl. Acad. Sei. (USA) 77:7347–7351.Google Scholar
  87. 87.
    E. L. Dally; H. W. Stokes; and D. E. Eveleigh. 1982. Biotech. Letters 4:91–96.Google Scholar
  88. 88.
    H. W. Stokes and E. L. Dally. 1982. Unpublished observations.Google Scholar
  89. 89.
    H. W. Stokes; E. L. Dally; R. L. Wüliams; B. S. Montenecourt; and D. E. Eveleigh. 1980. Chemistry in energy production. A.C.S. Symp. pp. 115–121.Google Scholar
  90. 90.
    L. E. Bryan and S. Kwan. 1981. J. Antimicrob. Chemother. 8 Suppl. D:l-8.Google Scholar
  91. 91.
    M. Bagdasarian; R. Lurz; B. Ruckert; F. C. H. Franklin; M. M. Bagdasarian; J. Frey; and K. N. Timmis. 1981. Gene 16:237–247.Google Scholar
  92. 92.
    T. D. Petes. 1980.Ann. Rev. Biochem. 49:845–876.Google Scholar
  93. 93.
    L. H. Hartwell. 1914. Bacteriol. Rev. 38:164–198.Google Scholar
  94. 94.
    M. Guerineau. 1979. In Viruses and plasmids in fungi, Edited P. A. Lemke. New York: Marcel Dekker, pp. 155–181.Google Scholar
  95. 95.
    The molecular biology of the yeast Saccharo- myces. 1981. J. N. Strathern; E. W. Jones; J. R. Broach, eds. Cold Spring Harbor Laboratory.Google Scholar
  96. 96.
    J. Lodder. 1970. In The yeasts: A taxonomie study. New York: Interscience.Google Scholar
  97. 97.
    J. Herskowitz and J. Oshima. 1981. In The molecular biology of the yeast Saccharomyces. J. Strathem; E. W. Jones; J. R. Broach, eds. Cold Spring Harbor Laboratory, pp. 181–210.Google Scholar
  98. 98.
    E. Bücking-Throm; W. Duntze; L. H. Hartwell; and J. R. Manney. 1973. Expl. Cell Res. 76:99–110.Google Scholar
  99. 99.
    E. Bücking-Throm and W. Duntze. 1970. J. Bacteriol. 104:1388–1390.Google Scholar
  100. 100.
    R. K. Mortimer and D. Schild. 1981. In The molecular biology of the Yeast Saccharomyces. J. Strathem; E. W. Jones; J. R. Broach, eds. Cold Spring Harbor Laboratory, pp. 11–26.Google Scholar
  101. 101.
    R. K. Mortimer and D. Schild. Microbiol. Rev. 1980. 44:519–537.Google Scholar
  102. 102.
    J. N. Strathem; C. S. Newton; J. Herskowitz; and J. B. Hicks. 1979. Cell 18:309–315.Google Scholar
  103. 103.
    R. Bigilas; J. Keesey; and T. R. Ferik. 1977. JCN-UCLA Symp. 8:179–189.Google Scholar
  104. 104.
    D. H. Clayton; T. A. Howard; and P. A. Martin. 1972. Amer. Soc. Brew. Chem. Proc. 30:78–81.Google Scholar
  105. 105.
    R. S. Tubb. 1979.J. Inst. Brew. 85:286–289.Google Scholar
  106. 106.
    P. van Solnigen and J. B. van der Platt. 1977. J. Bacteriol. 130:946–947.Google Scholar
  107. 107.
    J. Russell and G. G. Stewart. 1979. J. Inst. Brew. 85:95–98.Google Scholar
  108. 108.
    R. B. Wickner. 1981. In The molecular biology of the yeast Saccharomyces. J. N. Strathem; E. W. Jones; J. R. Broach, eds. Cold Spring Harbor Laboratory, pp. 415–444.Google Scholar
  109. 109.
    B. Dujon. In The molecular biology of the yeast Saccharomyces. 1981. J. N. Strathem; E. W. Jones; J. R. Broach, eds. Cold Spring Harbor Laboratory, pp. 505–635.Google Scholar
  110. 110.
    J. H. Sinclair; B. J. Stephens; P. Sanghavi; and M. Rabinowitz. 1967. Science 156:1234–1237.Google Scholar
  111. 111.
    C. P. Hollenberg; P. Borst; and E. F. J. van Bmggen. 1970. Biochem. Biophys. Acta. 209:1–15.Google Scholar
  112. 112.
    G. D. Clark-Walker and G. G. Miklos. 1974. Eur. J. Biochem. 41:359–365.Google Scholar
  113. 113.
    J. R. Broach. 1982.Cell 28:203–204.Google Scholar
  114. 114.
    S. C. Falco; Y. Li; J. R. Broach; and D. Botstein. 1977. All. 29:573–584.Google Scholar
  115. 115.
    D. M. Livingston. 1977.Genetics 86:73–84.Google Scholar
  116. 116.
    G. G. Stewart; J. Russell; C. J. Panchal. 1980. Abstr. VI in Int. Symp. on Yeasts. London (Ontario), Canada, pp. 212–221.Google Scholar
  117. 117.
    A. Hinnen; J. B. Hicks; and G. R. Fink. 1978. Proc. Natl. Acad. Sei. (USA) 75:1929–1933.Google Scholar
  118. 118.
    J. D. Beggs. 1978.Nature 275:104–109.Google Scholar
  119. 119.
    K. Stmhl; D. J. Stinchcomb; S. Scherer; and R. W. Davis. 1979. Proc. Nat. Acad. Sei. (USA) 76:1035–1039.Google Scholar
  120. 120.
    L. Clark and J. Carbon. 1980. Nature 287:504–509.Google Scholar
  121. 121.
    D. Morris; J. Noti; F. K. Osbome; and A. Szalay. 1981. DNA 1:27–35.Google Scholar
  122. 122.
    D. Morris. Personal Communication.Google Scholar
  123. 123.
    C. Segen; P. J. Farabraugh; A. Hinnen; J. M. Walsh; G. R. Fink. 1979. In Genetic engineering principles and methods. Vol 1. J. K. Setlow and A. Hollander, eds. New York: Plenum Press, pp. 117–132.Google Scholar
  124. 124.
    D. Botstein; S. C. Falco; S. E. Stewart; M. Bren- nan; S. Scherer; D. T. Stinchcomb; K. Stmhl; and R. W. Davis. 1979.Gene 8:17–24.Google Scholar
  125. 125.
    F. Bolivar; R. Rodriquez; P. J. Greene; M. C. Betlack; H. Heyneker; J. H. Cresa; S. Falfon; and H. W. Boyer. 1977. Gene 2:95–113.Google Scholar
  126. 126.
    M. L. Bach; F. Lacrante; and D. Botstein. 1979. Proc. Natl. Acad. Sei. (USA) 76:386–390.Google Scholar
  127. 127.
    Methods in enzymology. Vol. 68. 1979. Edited by R. Wu. New York: Academic Press.Google Scholar
  128. 128.
    G. Hohn. In Methods in enzymology. Vol. 68. 1979. Edited by R. Wu. New York: Academic Press, pp. 299–308.Google Scholar
  129. 129.
    J. Collins. In Methods in enzymology. Vol. 68. 1979. Edited by R. Wu. New York: Academic Press, pp. 309L-325.Google Scholar
  130. 130.
    M. Gmnstein and D. S. Hogness. 1975. Proc. Natl. Acad. Sei. (USA) 72:3961–3965.Google Scholar
  131. 131.
    R. A. Kramer; J. R. Cameron; and R. W. Davis. 1976.Cell 8:227–232.Google Scholar
  132. 132.
    J. D. Petes; J. R. Broach; P. Wensink; L. M. Hereford; G. R. Fink; and D. Botstein. 1978. Gene 4:37–49.Google Scholar
  133. 133.
    M. V. Olson; B. D. Hall; J. R. Cameron; and R. W. Davis. 1979. J. Molec. Biol. 127:285–295.Google Scholar
  134. 134.
    D. L. Montgomery; B. D. Hall; S. Gillam; and M. S. Smith. 1978. Cell 14:673–680.Google Scholar
  135. 135.
    K. Stmhl and R. W. Davis. 1977. Proc. Natl. Acad. Sei. (USA) 74:5255–5259.Google Scholar
  136. 136.
    B. Ratzkin and J. Carbon. 1977. Proc. Natl. Acad. Sei. (USA) 74:487–491.Google Scholar
  137. 137.
    D. Vapnek. 1977. Proc. Natl. Acad. Sei. (USA) 74:3508–3512.Google Scholar
  138. 138.
    K. Stmhl; J. R. Cameron; and R. W. Davis. 1976. Proc. Natl. Acad. Sei. (USA) 74:1471–1475.Google Scholar
  139. 139.
    L. Clarke and J. Carbon. 1978. J. Mot. Biol. 120: 517–532.Google Scholar
  140. 140.
    R. C. Dickson and J. S. Markin. 1978.Cell 15: 123–130.Google Scholar
  141. 141.
    M. V. Olson. 1918. In Genetic engineering principles and methods. Vol. 3. J. K. Setlow and A. Hollander, eds. New York: Academic Press, pp. 57–88.Google Scholar
  142. 142.
    A. Hinnen; P. J. Farabraugh; C. Ilgen; and G. R. Fink. 1979. In Eukaryotic gene regulation. Vol. 14. R. Axel; T. Maniatis; M. Fox, eds. New York: Academic Press, pp. 43–51.Google Scholar
  143. 143.
    K. A. Nasmyth and S. S. Reed. 1980. Proc. Nad. Acad. Sei. (USA) 77:2119–2123.Google Scholar
  144. 144.
    K. A. Nasmyth and K. Thatchell. 1980.Cell 19: 753–764.Google Scholar
  145. 145.
    V. M. Williamson; J. Bennetzen; E. J. Young; K. Nasmyth; and B. D. Hall. 1980.Nature 283:214–216.Google Scholar
  146. 146.
    R. W. Davis; G. R. Fink; and D. Botstein. 1981. Ann. Rev. Biochem. 50:112–158.Google Scholar
  147. 147.
    J. J. Pantkier; P. Foumier; H. Heslot; and A. Ramback. 1980. Curr. Genetics 2:109–113.Google Scholar
  148. 148.
    A. Jiminez and J. Davies. 1980. Nature 280: 869–871.Google Scholar
  149. 149.
    J. D. Beggs; J. van den Berg; A. van Ooyen; and C. Weissman. 1980. Nature 283:835–840.Google Scholar
  150. 150.
    R. C. Dickson. 1980.Gene 10:347–356.Google Scholar
  151. 151.
    O. Mercereau-Puijalen; F. Lacroute; and P. Kou- rilsky. 1980.Gene 11:163–167.Google Scholar
  152. 152.
    R. A. Hitzeman; F. E. Hagie; H. L. Levine; D. V. Goeddel; G. Ammerer; and B. D. Hall. 1981. Nature 293:717–722.Google Scholar
  153. 153.
    C. C. Emeis. 1971. Amer. Soc. Brew. Chem. Prac. 29:58–62.Google Scholar
  154. 154.
    H. Tamaki. 1978. Molecular Gen. Genet. 164: 205–209.Google Scholar
  155. 155.
    F. K. Zimmerman; N. A. Khan; and N. R. Eaton. 1973. Molec. Gen. Genet. 123:29–41.Google Scholar
  156. 156.
    D.B. Mowshowitz. 1979. J. Bact. 137:1200–1207.Google Scholar
  157. 157.
    G. G. Stewart. Personal Communication.Google Scholar
  158. 158.
    G. B. Calleja; S. L. Rick; A. Nasim; C. V. Lusena; C. C. Champagne; I. A. Veliky; and F. Morannelli. 1982. In The XIII Proceedings of the International Congress of Microbiology. Boston, Mass.; August 8–13, 1982.Google Scholar
  159. 159.
    K. Yamane and B. Maruo. 1980. In Molecular breeding and genetics of applied microorganisms. Edited by K. Sakaguchi and M. Okanish, Tokyo, Japan: Kodansha-Academic Press, pp. 117–123.Google Scholar
  160. 160.
    J. A. Bassham. 1975. Biotech. Bioeng. Symposium. No. 5. Sept. 19, 1975.Google Scholar
  161. 161.
    C. S. Gong and G. T. Tsao. 1979. Ann. Repisms. Ferment. Processes 3:111–140.Google Scholar

Copyright information

© American Solar Energy Society, Inc. 1983

Authors and Affiliations

  • H. W. Stokes
    • 1
  • S. K. Picataggio
    • 1
  • D. E. Eveleigh
    • 1
  1. 1.Department of Biochemistry and Microbiology, Cook College, New Jersey Agricultural Experiment StationRutgers UniversityNew BrunswickUSA

Personalised recommendations