Finding a Velocity Profile from a Love Wave Dispersion Curve: Problems of Uniqueness

  • M. L. Gerver
  • D. A. Kazhdan


In [1] we considered the problem of finding a function ρ(x) from the eigenvalue s = s(p) of an equation y″ + [pρ(x) − s] y = 0. The methods employed in [1] allow us to consider a more general equation [A(x)y′]′+ [pB(x) − sC(x)] y = 0. This in turn makes it possible to study some questions of uniqueness in the inverse problem for Love waves, i.e., determination of the characteristics of the medium from the phase or group velocity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Gerver, M. L., and D. A. Kazhdan (1967), “On finding the function ρ(x) from the eigenvalue s = s(p) of the equation y″ + [pρ(x) − s] y = 0,” Matern. Sb., 73:115.Google Scholar
  2. 2.
    Vil’kovich, E. V., A. L. Levshin, and M. G. Neigauz (1966), “Love waves in a vertically inhomogeneous medium (allowance for sphericity, parameter variations, and absorption),” Computational Seismology, No. 2, Moscow, Nauka, pp. 130–149 [English translation in: Seismic Love Waves, New York, Consultants Bureau (1967)].Google Scholar
  3. 3.
    Gerver, M. L., and V. M. Markushevich (1965), “Study of ambiguity in determining seismicwave propagation velocity from travel-time curves,” Dokl. Akad. Nauk SSSR, Vol. 163, No. 6.Google Scholar
  4. 4.
    Titchmarsh, E. C. (1962), “Eigenfunction Expansions Associated with Second-Order Differential Equations, Vol. 1, Oxford, Clarendon Press.Google Scholar
  5. 5.
    Petrovskii, I. G. (1961), “Lectures on Partial Differential Equations,” Moscow, Fizmatgiz, p. 182.Google Scholar
  6. 6.
    Markushevich, V. M. (1950), Theory of Analytic Functions, Moscow and Leningrad, Gostekhizdat.Google Scholar

Copyright information

© Consultants Bureau, New York 1972

Authors and Affiliations

  • M. L. Gerver
  • D. A. Kazhdan

There are no affiliations available

Personalised recommendations