Sesquiterpene Lactones: Biogenesis and Biomimetic Transformations

  • Nikolaus H. Fischer
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 24)


The different skeletal types of sesquiterpene lactones (SLs) are classified on the basis of their carbocyclic ring skeleton, in which the suffix “olide” is used to indicate the presence of a lactone group. The majority of SLs from higher plants contain α-methylene-γ-lactone functions (1) in which H-7 is, without exception, α-oriented.1–4 Certain liverworts, however, produce SLs of the enantiomeric series.5 In this review the biogenesis of only those common SLs will be considered in which one of the isopropyl methyls of the sesquiterpene ring is oxidized. The major skeletal types of SLs with the generally accepted numbering are outlined in Figure 1. The lactone rings are shown as 12,6-lactonized structures, although many SLs contain 12,8-lactones. The by far largest number of SLs has been isolated from the Asteraceae (Compositae),1–4 but they are also found in other angiosperm families including the Acanthaceae, Amaranthaceae, Apiaceae,6 Aristolochiaceae, Burseraceae, Bombacaceae, Coriariaceae, Illiciaceae, Magnoliaceae, Menispermaceae, Lamiaceae, Lauraceae, Polygonaceae and Winteraceae.


Absolute Configuration Sesquiterpene Lactone Allylic Alcohol Selenium Dioxide Tetrahedron Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    FISCHER, N.H., E.J. OLIVIER, H.D. FISCHER. 1979. The biogenesis and chemistry of sesquiterpene lactones. In: Prog. Chem. Org. Nat. Prod. (W. Herz, H. Grisebach, G.W. Kirby, eds.) Springer, Wien, New York, Vol. 38, pp. 47–390.Google Scholar
  2. 2.
    SEAMAN, F.C. 1982. Sesquiterpene lactones as characters in the Asteraceae. Bot. Review 48: 121–592.CrossRefGoogle Scholar
  3. 3.
    YOSHIOKA, H., T.J. MABRY, B.N. TIMMERMANN. 1973. Sesquiterpene, Lactones: Chemistry, NMR, and Plant Distribution. Univ. of Tokyo Press, Tokyo, 544 pp.Google Scholar
  4. 4.
    BRETON FUNES, J.L. 1974. Lactonas sesquiterpenicas. In: Servicio de Publicaciones de la Caja General de Ahorros de Santa Cruz de Tenerife. Santa Cruz de Tenerife, pp. 12–119.Google Scholar
  5. 5.
    ASAKAWA, Y. 1982. Chemical constituents of the Hepaticae. In: Prog. Chem. Org. Nat. Prod. (W. Herz, H. Grisebach, G. W. Kirby, eds.) Springer, Wien, New York, Vol. 42, 1–285.Google Scholar
  6. 6.
    HOLUB, M., M. BUDESINSKY. 1986. Sesquiterpene lactones of the Umbelliferae. Phytochemistry 25: 2015–2026.CrossRefGoogle Scholar
  7. 7.
    KORTE, F., H. BARKEMEYER, I. KORTE. 1959. Neue Ergebnisse der Chemie Pflanzlicher Bitterstoffe. In: Fortschr. Chem. Org. Naturst. (L. Zechmeister, ed.), Springer, Wien, Vol. 17, pp. 124–182.Google Scholar
  8. 8.
    SORM, F. 1961. Medium ring terpenes. In: Fortschr. Chem. Org. Naturst. (L. Zechmeister, ed.), Springer, Wien, Vol. 19, pp. 1–31.Google Scholar
  9. 9.
    SORM, F., L. DOLEJS. 1966. Guaianolides and germacranolides. In: Chimie de Substances Naturelles (E. Lederer, ed.) Herman, Paris, 153 pp.Google Scholar
  10. 10.
    SORM, R. 1970. Advances in terpene chemistry, Pure Appl. Chem. 21: 263–283.Google Scholar
  11. 11.
    ROMO, J., A. ROMO DE VIVAR. 1967. The Pseudoguaianolides. In: Fortschr. Chem. Org. Naturst. (L. Zechmeister, ed.), Springer, Wien, Vol. 25, 90–130.Google Scholar
  12. 12.
    HERZ, W. 1968. Pseudoguaianolides in Compositae. In: Recent Advances in Phytochemistry. (T.J. Mabry, R.E. Alston, V.C. Runeckles, eds.), Appleton-Century-Crofts, New York, Vol. 1, pp. 229–269.Google Scholar
  13. 13.
    HERZ, W. 1973. Pseudoguaianolides in Compositae. In: Chemistry in Botanical Classification. Nobel Symposium 25: Academic Press, New York, pp. 153–172.Google Scholar
  14. 14.
    HERZ, W. 1978. Sesquiterpene lactones in the Compositae. In: Biology and chemistry of the Compositae (V.H. Heywood, J.B. Harbome, B.L. Turner, eds.), Academic Press, London, New York, San Francisco, Vol. 1, pp. 337–357.Google Scholar
  15. 15.
    MABRY, T.J. 1970. Intraspecific variation of sesquiterpene lactones in Ambrosia (Compositae). Application to evolutionary problems at the populational level. In: Phytochemical Phylogeny (J. B. Harbome, ed.), Academic Press, London, pp. 269–300.Google Scholar
  16. 16.
    MABRY, T.J. 1973. Chemistry of geographical races. Pure Appl. Chem. 34: 377–400.CrossRefGoogle Scholar
  17. 17.
    PINDER, A.R. 1977. The chemistry of the eremophilanes and related sesquiterpenes. In: Prog. Chem. Org. Nat. Prod. (W. Herz, H. Grisebach, G.W. Kirby, eds.), Springer, Wien, Vol. 34, pp. 81–186.Google Scholar
  18. 18.
    ROBERTS, J.S., I. BRYSON. 1984. Sesquiterpenoids. Nat. Prod. Rep. 1: 105–169.CrossRefGoogle Scholar
  19. 19.
    FRAGA, B. M. 1985. Natural sesquiterpenoids. Nat. Prod. Rep. 2: 147–161.CrossRefGoogle Scholar
  20. 20.
    FRAGA, B. M. 1986. Natural sesquiterpenoids. Nat. Prod. Rep. 3: 273–296.CrossRefGoogle Scholar
  21. 21.
    FRAGA, B. M. 1987. Natural sesquiterpenoids. Nat. Prod. Rep. 4: 473–498.PubMedCrossRefGoogle Scholar
  22. 22.
    FRAGA, B. M. 1988. Natural sesquiterpenoids. Nat. Prod. Rep. 5: 497–521.CrossRefGoogle Scholar
  23. 23.
    CASSADY, J.M., M. SUFFNESS. 1980. Terpenoid antitumor agents. In: Anticancer Agents Based on Natural Products Models (J. M. Cassady, J.D. Douros, eds.) Academic Press, London, pp. 201–269.Google Scholar
  24. 24.
    MISRA, R., R.C. PANDEY. 1981. Cytotoxic and antitumor terpenoids. In: Antitumor Compounds of Natural Origin: Chemistry and Biochemistry (A. Aszalos, ed.), CRC Press, Boca Raton, Vol. 2, pp. 145–192.Google Scholar
  25. 25.
    PICMAN, A.K. 1986. Biological activities of sesquiterpene lactones. Biochem. System. Ecol. 14: 255–281.CrossRefGoogle Scholar
  26. 26.
    BURNETT, W.C., JR., S.B. JONES, JR., T.J. MABRY, W.G. PADOLINA. 1974. Sesquiterpene lactones—insect feeding deterrents in Vernonia. Biochem. System. Ecol. 2: 25–29.CrossRefGoogle Scholar
  27. 27.
    CORDELL, G.A. 1976. Biosynthesis of sesquiterpenes. Chem. Rev. 76:425–460.CrossRefGoogle Scholar
  28. 28.
    HERZ, W. 1986. Biogenetic aspects of sesquiterpene lactone chemistry. In: Natural Product Chemistry (Attaur-Rahman, ed.) Springer, Berlin, Heidelberg, pp. 154–174.CrossRefGoogle Scholar
  29. 29.
    GEISSMAN, T.A. 1973. The biogenesis of sesquiterpene lactones of the Compositae. In: Recent Advances in Phytochemistry (V. C. Runeckles, T. J. Mabry, eds.) Academic Press, New York and London, Vol. 6, pp. 65–95.Google Scholar
  30. 30.
    HERZ, W. 1977. Biogenetic aspects of sesquiterpene lactone chemistry. Israel J. Chem. 16: 32–44.Google Scholar
  31. 31.
    ROGERS, D., G.P. MOSS, S. NEIDLE. 1972. Proposed convention for describing germacranolide sesquiterpenes. Chem. Commun. 1972: 142–143.Google Scholar
  32. 32.
    SEAMAN, F.C., N.H. FISCHER, T.F. STUESSY. 1980. Systematic implications of sesquiterpene lactones in the subtribe Melampodiinae. Biochem. Syst. Ecol. 8: 263–271.CrossRefGoogle Scholar
  33. 33.
    NEIDLE, S., D. ROGERS. 1972. X-ray determination of the structure and absolute configuration of a novel sesquiterpene melampodin. Chem. Commun. 1972: 140–141.Google Scholar
  34. 34.
    MALCOLM, A.J., J.F. CARPENTER, F.R. FRONCZEK, N.H. FISCHER. 1983. Longicornins A to D, four cis-l(lO), cis-4-germac’radienolides from Melampodium longicorne. Phytochemistry 22: 2759–2766.CrossRefGoogle Scholar
  35. 35.
    WITT, M.E., S.F. WATKINS. 1978. Crystal structure of tamaulipin A, a 1 (10) -trans, 4-trans-germacranolide sesquiterpene lactone. J. Chem. Soc. Perkin Trans. 2, 1978: 204–208.Google Scholar
  36. 36.
    FRONCZEK, F.R., A. MALCOLM, N.H. FISCHER. 1983. The molecular structure of melampodinin-A. J. Nat. Prod. 46: 170–173.CrossRefGoogle Scholar
  37. 37.
    OBER, A.G., F.R. FRONCZEK, N.H. FISCHER. 1985. Sesquiterpene lactones of Calea divaricata and the molecular structure of leptocarpin acetate. J. Nat. Prod. 48: 302–306.CrossRefGoogle Scholar
  38. 38.
    SAMEK, Z., J. HARMATHA. 1978. Use of structural changes for stereochemical assignments of natural α-exomethy-lene y-lactones of the germacra-1(10),4-dienolide type on the basis of allylic and vicinal couplings of bridgehead protons. Hydrogenation of endocyclic double bonds. Collect. Czech. Chem. Commun. 43: 2779–2799.CrossRefGoogle Scholar
  39. 39.
    BHACCA, N.S., N.H. FISCHER. 1969. The determination of the conformation of a germacranolide (dihydrotamaulipin A acetate) with the aid of nuclear Overhauser effects. Chem. Commun. 1969: 68–69.Google Scholar
  40. 40.
    QUIJANO, L., J.S. CALDERON, F. GOMEZ-GARIBAY, S. BAUTISTA, T. RIOS, F.R. FRONCZEK. 1986. Montafrusin B, a germacrolide from Montanoa frutescens and the molecular strucure of montafrusin A. Phytochemistry 25: 695–697.CrossRefGoogle Scholar
  41. 41.
    RYCHLEWSKA, U. 1981. Stereochemistry of a novel sesquiterpene lactone. X-ray determination of the structure of ursiniolide A monohydrate. J. Chem. Soc. Perkin Trans. 2, 1981: 660–663.Google Scholar
  42. 42.
    SEAMAN, F.C., A.J. MALCOLM, N.H. FISCHER. 1983. Germacra-12, 6β-olides from Montanoa revealii and M. mollissima. Phytochemistry 23:1063–1066.CrossRefGoogle Scholar
  43. 43.
    EL-FERALY, F.S., D.A. BENIGNI, A.T. MCPHAIL. 1983. Biogenetic-type synthesis of santonin, chrysanolide, dihydrochrysanolide, tulirinol, arbusculin C., tanacetin, and artemin. J. Chem. Soc. Perkin Trans. 1 1983: 355–364.CrossRefGoogle Scholar
  44. 44.
    TORI, K., I. HORIBE, Y. TAMURA, K. KURIYAMA, H. TADA, K. TAKEDA. 1976. Re-investigation of the conformation o laurenobiolide, a ten-membered ring sesquiterpene lactone by variable-temperature carbon-13 nmr spectroscopy. Evidence for the presence of four conformational isomers in solution. Tetrahedron Letters 1976: 387–390.CrossRefGoogle Scholar
  45. 45.
    QUIJANO, L., J.S. CALDERON, G.F. GOMEZ, P.J. LOPEZ, T. RIOS, F.R. FRONCZEK. 1984. The crystal structure of 6-epi-desacetyllaurenobiolide, a germacra-a(10), 4-diene-12, 8α-olide from Montanoa grandiflora, Phytochemistry 23: 1971–1974.CrossRefGoogle Scholar
  46. 46.
    MING, C.W., R. MAYER, H. ZIMMERMANN, G. RUECKER. 1989. A non-oxidized melampolide and other germacranolides from Aristolochia yunnanensis. Phytochemistry 28: 3233–3234.CrossRefGoogle Scholar
  47. 47.
    KRISHNAN, S., S.K. PAKNIKAR, S.C. BHATTACHARYYA, A.L. HALL, W. HERZ. 1978. Biogenetic-type transformation of germacranolide to melampolides. J. Indian Chem. Soc. 55: 1142–1147.Google Scholar
  48. 48.
    HARUNA, M., K. ITO. 1981. Regio- and stereo-specific allylic oxidation of germacrane-type sesquiterpene lactones with selenium dioxide and t-butyl hydroperoxide. J. Chem. Soc. Chem. Comm. 1981:483–485.CrossRefGoogle Scholar
  49. 49.
    EL-FERALY, F.S. Melampolides from Magnolia grandiflora. 1984. Phytochemistry 23: 2372–2374.Google Scholar
  50. 50.
    MALCOLM, A.J. 1983. Ph.D. dissertation, Louisiana State University, Baton Rouge, Louisiana, U.S.A., pp. 215.Google Scholar
  51. 51.
    GOVINDACHARI, T.R., B.S. JOSHI, V.N. KAMAT. 1965. Structure of parthenolide. Tetrahedron 21: 1509–1519.CrossRefGoogle Scholar
  52. 52.
    FISCHER, N.H., R.A. WILEY, D.L. PERRY. 1976. Sesquiterpene lactones from Melampodium (Compositae, Heliantheae); Structural and biosynthetic considerations. Rev. Latinoamer. Quim. 7: 87–93.Google Scholar
  53. 53.
    OLIVIER, E.J., A.J. MALCOLM, D.V. ALLIN, N.H. FISCHER. 1983. Melrosin A, B, and C., three cis-1(10)-cis-4- germacradienolides from Melampodium rosei. Phytochemistry 22: 1453–1456.CrossRefGoogle Scholar
  54. 54.
    JAIN, T.C., C.M. BANKS, J.E. MCCLOSKEY. 1976. Reversible dimethylamine addition as a protecting reaction for α,β-unsaturated methylene groups of y-lactones and its regeneration by basic elimination of quaternary ammonium salts. Tetrahedron 32: 765–768.CrossRefGoogle Scholar
  55. 55.
    FISCHER, N.H. 1978. On the biogenesis of pseudoguaianolides. Rev. Latinoamer. Quim. 9: 41–46.Google Scholar
  56. 56.
    DELGADO, G., H. HERNANDEZ, A. ROMO DE VIVAR. 1984. Structure of elemanschkuhriolide. Melampolides as possible biogenetic precursors of C14α, C5β-elemanolides. J. Org. Chem. 49: 2994–2996.CrossRefGoogle Scholar
  57. 57.
    BRECKNELL, D.J., R.M. CARMAN. 1979. The interconversion of two elemadienolides through two consecutive Cope rearrangements. Aust. J. Chem. 32: 2097–2102.CrossRefGoogle Scholar
  58. 58.
    BOHLMANN, F., J. JAKUPOVIC, A. SCHUSTER. 1983. 8-Hydroxypegolettiolide, a sesquiterpene lactone with a new carbon skeleton and further constituents from Pegolettia senegalensis. Phytochemistry 22: 1637–1644.CrossRefGoogle Scholar
  59. 59.
    HOLUB, M., Z. SAMEK, V. HEROUT. 1972. Structure of iso-laserolide from Laser trilobum. Phytochemistry 11: 3053–3055.CrossRefGoogle Scholar
  60. 60.
    SAMEK, Z., M. HOLUB, U. RYCHLEWSKA, H. GRABARCZYK, B. DROZDZ. 1979. Germacra-1(10),4-dien-cis-6,12-olides: a novel stereochemical group of natural sesquiterpenic lactones from Ursinia anthemoides (L.) Poiret. Tetrahedron Letters 29: 2691–2694.CrossRefGoogle Scholar
  61. 61.
    RAO, A.S., A.P. SADGOPAL, S.C. BHATTACHARYYA. 1961. Structure of suassurea lactone. Tetrahedron 13: 319–323.CrossRefGoogle Scholar
  62. 62.
    KUPCHAN, S.M., R.J. HEMINGWAY, D. WERNER, A. KARIM. 1969. Vernolepin, a novel sesquiterpene dilactone tumor inhibitor from Vernonia hymenolepis A. Rich. J. Org. Chem. 34: 3903–3908.CrossRefGoogle Scholar
  63. 63.
    MALDONADO, E., M. SORIANO-GARCIA, C. GUERRERO, A. ROMO DE VIVAR, A. ORTEGA. 1985. The structures of 9-hydroxy-zinnolides and their rearranged acetates. Phytochemistry 24: 991–994.CrossRefGoogle Scholar
  64. 64.
    BOHLMANN, F., C. ZDERO. 1979. Neue Germacranolide and andere Inhaltsstoffe aus Vertretern der Subtribus Gochnatiinae. Phytochemistry 18: 95–98.CrossRefGoogle Scholar
  65. 65.
    SUTHERLAND, J.K. 1974. Regio- and stereo-specificity in the cyclization of medium ring 1,5-dienes. Tetrahedron 30: 1651–1660.CrossRefGoogle Scholar
  66. 66.
    WILTON, J.H., R.W. DOSKOTCH. 1983. Acid cyclization and other products of germacranolide epoxide lipiferolide. J. Org. Chem. 48: 4251–4256.CrossRefGoogle Scholar
  67. 67.
    PARODI, F.J., F.R. FRONCZEK, N.H. FISCHER. 1989. Biomimetic transformations of 11,13-dihydroparthenolide and oxidative rearrangements of a guai-1(10)-en-6,12-olide. J. Nat. Prod. 52: 554–566.CrossRefGoogle Scholar
  68. 68.
    GONZALEZ, A.G., A. GALINDO, H. MANSILLA, J.A. PALENZUELA. 1983. Evidence for the biogenesis of trans-(1β-H; 5a-H)-guaianolides. Tetrahedron Letters 24: 969–972.CrossRefGoogle Scholar
  69. 69.
    KULKARNI, G.H., G.R. KELKAR, S.C. BHATTACHARYYA. 1964. Cyclocostunolides. Tetrahedron 20: 2639–2645.CrossRefGoogle Scholar
  70. 70.
    RODRIGUES, A.A.S., M. GARCIA, J.A. RABI. 1978. Facile biomimetic synthesis of costunolide-1(10)-epoxide, santamarin and reynosin. Phytochemistry 17: 953–945.CrossRefGoogle Scholar
  71. 71.
    PATHAK, S.P., B.V. BAPAT, G.H. KULKARNI. 1970. Conversion of costunolide into santamarine and reynosin. Indian J. Chem. 8: 471–472.Google Scholar
  72. 72.
    GONZALEZ, A.G., A. GALINDO, H. MANSILLA. 1980. Biomimetic cyclization of gallicin to form guaianolides. Tetrahedron 36: 2015–2017.CrossRefGoogle Scholar
  73. 73.
    GONZALEZ, A.G., A. GALINDO, H. MANSILLA, A. ALEMANY. 1979. Conformation of gallicin, a ten-membered ring sesquiterpene lactone. Tetrahedron Letters 39: 3769–3772.CrossRefGoogle Scholar
  74. 74.
    AOTA, K., C.N. CAUGHLAN, M.T. EMERSON, W. HERZ, S. INAYAMA, M. UL-HAQUE. 1970. Structure and absolute configuration of pulchellin. Crystal and molecular structure of 3-bromoanhydrodehydrodihydropulchellin. J. Org. Chem. 35: 1448–1452.CrossRefGoogle Scholar
  75. 75.
    DULLFORCE, T.A., G.A. SIM, D.N.J. WHITE, J.E. KELSEY, S.M. KUPCHAN. 1969. The stereochemistry of gaillardin. Tetrahedron Letters 1969: 973–976.CrossRefGoogle Scholar
  76. 76.
    ZDERO, C., F. BOHLMANN, R.M. KING, H. ROBINSON. 1986. Guaianolide glucosides from Helenium donianum. Planta Medica 1986: 22–24.CrossRefGoogle Scholar
  77. 77.
    HERZ, W., R. MURARI, J.F. BLOUNT. 1979. Revised structures of pleniradin and baileyin and their bearing on the biogenesis of helenanolides. J. Org. Chem. 44: 1873–1876.CrossRefGoogle Scholar
  78. 78.
    GONZALEZ, A.G., A. GALINDO, H. MANSILLA, A. GUTIERREZ. 1982. Evidence for the biogenesis of 1a-hydroxy-trans-eudesmanolides. J. Chem. Soc. Perkin 1, 1982: 881–884.CrossRefGoogle Scholar
  79. 79.
    BOHLMANN, F., G. SCHMEDA-HIRSCHMANN, J. JAKUPOVIC. 1984. Further 6,12-cis-germacranolides and eudesmanolides from Mon tanoa species. J. Nat. Prod. 47:663–672.CrossRefGoogle Scholar
  80. 80.
    HOLUB, M., M. BUDESINSKY, Z. SMITALOVA, D. SAMAN, U. RYCHLEWSKA. 1985. Structure of Isosilerolide, relative and absolute configuration of silerolide and lasolide—sesquiterpenic lactones of new stereoisometric type of eudesmanolides. Collect. Czech. Chem. Commun. 51: 903–929.CrossRefGoogle Scholar
  81. 81.
    HOLUB, M., Z. SAMEK, S. VASICKOVA, M. MASOJIDKOVA. 1978. 11-Hydroxy-1βH, 5βH, 6αH, 7αH-guaian-6,12-olides: relative and absolute configuration of the sesquiterpenic lactones montanolide, isomontanolide, acetylisomontano-lide and related substances. Collec. Czech. Chem. Commun. 43: 2444–2470.CrossRefGoogle Scholar
  82. 82.
    SMITALOVA, Z., M. BUDESINSKY, D. SAMAN, M. HOLUB. 1986. Minor sesquiterpenic lactones of Laser trilobum (L.) Borkh. Species. Collect. Czech. Chem. Commun. 51: 1323–1339.CrossRefGoogle Scholar
  83. 83.
    SEAMAN, F.C., N.H. FISCHER, T.J. MABRY. 1986. Isodehydroleucodin and another novel cis-lactonized guaianolide from Montanoa imbricata. Phytochemistry 25: 2663–2664.CrossRefGoogle Scholar
  84. 84.
    ANDERSON, G.D., R.S. MCEWEN, W. HERZ. 1972. Relative and absolute configuration of axivalin and its congeners. Tetrahedron Letters 1972: 4423–4426.CrossRefGoogle Scholar
  85. 85.
    MINATO, H., S. NOSAKA, I. HORIBE. 1964. The structure of carabrone, a new component of Carpesium abrotanoides, Linn. J. Chem. Soc. 1964: 5503–5510.CrossRefGoogle Scholar
  86. 86.
    HERZ, W., S.V. BHAT, A.L. HALL. 1970. Parthemollin, a new xanthanolide from Parthenice mollis Gray. J. Org. Chem. 35: 1110–1114.CrossRefGoogle Scholar
  87. 87.
    RODRIGUEZ, E., H. YOSHIOKA, T.J. MABRY. 1971. The sesquiterpene lactone chemistry of the genus Parthenium. Phytochemistry 10: 1145–1154.CrossRefGoogle Scholar
  88. 88.
    KAGAN, H.B., H.E. MILLER, W. RENOLD, M.V. LAKSHMIKANTHAM, L.R. TETHER, W. HERZ, T.J. MABRY. 1966. The structure of psilostachyin C., a new sesquiterpene lactone from Ambrosia psilostachya D.C. J. Org. Chem. 31: 1629–1632.CrossRefGoogle Scholar
  89. 89.
    STEFANOVIC, M., I. ALJANCIC-SOLAJA, S. MILOSAVLJEVIC. 1987. A 3,4-seco-ambrosanolide from Ambrosia artemisiifolia. Phytochemistry 26: 850–852.CrossRefGoogle Scholar
  90. 90.
    BORDOLOI, M.J., R.P. SHARMA, J.C. SARMA. 1986. Biomimetic transformation of a guaianolide to a pseu-doguaianolide. Tetrahedron Letters 27: 4633–4634.CrossRefGoogle Scholar
  91. 91.
    ORTEGA, A., E. MALDONADO. 1986. A one-step transformation of 4α, β-epoxygermacrolides into pseudoguaianolides. First Symposium of the Latin American Phytochemical Academy. Mexico City, March 3–6, 1986.Google Scholar
  92. 92.
    BOHLMANN, F., J. JAKUPOVIC, M. AHMED, A. SCHUSTER. 1983. Sesquiterpene lactones and other constituents from Schistostephium species. Phytochemistry 22: 1623–1636.CrossRefGoogle Scholar
  93. 93.
    KITAGAWA, I., Y. YAMAZOE, H. SHIBUYA, R. TAKEDA, H. TAKENO, I. YOSIOKA. 1974. Biogenetically patterned transformation of eudesmanolide to eremophilanolide I. Angular methyl migration of 50α, 6α-epoxydihydroalanto-lactone. Chem. Pharm. Bull. 22: 2662–2674.CrossRefGoogle Scholar
  94. 94.
    TANAKA, N., T. YAZAWA, K. AOYAMA, T. MURAKAMI. 1976. Chemical studies on the constituents of Xanthium canadense Mill. Chem. Pharm. Bull. 24: 1419–1421.CrossRefGoogle Scholar
  95. 95.
    BOHLMANN, F., C. ZDERO, R.M. KING, H. ROBINSON. 1986. Neue Sesquiterpenlactone und andere Inhaltsstoffe aus Stevia mercedensis und Stevia achalensis. Liebigs Ann. Chem. 1986: 799–813.CrossRefGoogle Scholar
  96. 96.
    DOSKOTCH, R.W., C.D. HUFFORD, F.S. EL-FERALY. 1972. Further studies on the sesquiterpene lactones tulipino-lide and epitulipinolide from Liriodendron tulipifera L. J. Org. Chem. 37: 2740–2744.CrossRefGoogle Scholar
  97. 97.
    USKOKOVIC, M.R., T.H. WILLIAMS, J.F. BLOUNT. 1974. The structure and absolute configuration of arteannuin B. Helv. Chim. Acta 57: 600–602.PubMedCrossRefGoogle Scholar
  98. 98.
    MISRA, L.N. 1986. Arteannuin-C., a sesquiterpene lactone from Artemisia annua. Phytochemistry 25: 2892–2893.CrossRefGoogle Scholar
  99. 99.
    HUNECK, S., C. ZDERO, F. BOHLMANN. 1986. Seco-guaianolides and other constituents from Artemisia species. Phytochemistry 25: 883–889.CrossRefGoogle Scholar
  100. 100.
    RUSTAIYAN, A., A. BAMONIERI, M. RAFFATRAD, J. JAKUPOVIC, F. BOHLMANN. 1987. Eudesmane derivatives and highly oxygenated monoterpenes from Iranian Artemisia species. Phytochemistry 26: 2307–2310.CrossRefGoogle Scholar
  101. 101.
    APPENDINO, G., P. GARIBOLDI, M. CALLERI, G. CHIARI, D. VITERBO. 1983. The structure and conformation of umbellifolide, a 4,5-seco-eudesmane derivative. J. Chem. Soc. Perkin Trans. 1. 1983: 2705–2709.CrossRefGoogle Scholar
  102. 102.
    KLAYMAN, D.L. 1985. Quinghaosu (Artemisinin): an antimalarial drug from China. Science 228: 1049–1055.PubMedCrossRefGoogle Scholar
  103. 103.
    NAIR, M.S.R., N. ACTON, D.L. KLAYMAN, K. KENDRICK, H.H. LEHMAN, S. MANTE. 1985. Int. Research Congress on Nat. Prod., Chapel Hill, NC., U.S.A., Abstract No. 102.Google Scholar
  104. 104.
    EL-FERALY, F.S., I.A. AL-MESHAL, M.A. AL-YAHYA, M.S. HIFNAWY. 1986. On the possible role of quinghao acid in the biosynthesis of artemisinin. Phytochemistry 25: 2777–2778.CrossRefGoogle Scholar
  105. 105.
    FLORES, H.E. 1987. Use of plant cells and organ culture in the production of biological chemicals. ACS Symposium Series 334, ACS, Washington DC., pp. 66–86.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Nikolaus H. Fischer
    • 1
  1. 1.Department of ChemistryLouisiana State UniversityBaton RougeUSA

Personalised recommendations