Role of Agents Other than cAMP in the Regulation of Differentiation of Nerve Cells

  • Kedar N. Prasad


While studying the effect of peripheral tissue on the developing nervous system, Bueker1 observed a marked hypertrophy of chick embryonic sensory and sympathetic ganglia after the transplantation of mouse sarcoma tissue. It was later found2 that this hypertrophy was due to the release of a humoral factor by the tumor explants, and this factor was named nerve growth factor (NGF). NGF is essential for the growth, development, and maintenance of embyronic sympathetic ganglia, dorsal root ganglia, and sensory ganglia in vivo and in vitro.3–5 NGF appears to have a rather selective effect on the sympathetic system, although several reports indicate that NGF also stimulates other cell types; however, the magnitude of such effects is minor.6 Therefore, the main physiological effect of NGF may be on the sympathetic nervous system.6 This is supported by the fact that NGF antiserum produces a rapid and complete destruction of all para- and prevertebral ganglia.7.8 The NGF-antiserum-induced morphological changes that eventually lead to cell death are different from those produced by cytotoxic drugs.6 For example, the initial morphological changes seen after treatment with a cytotoxic agent such as 6-hydroxydopamine (6-OHDA) are first observed in the cytoplasm. These changes gradually spread to the nucleus and are followed by cell death. On the other hand, the lesion produced by NGF antiserum appears first in the nucleus and then in the cytoplasm. The nuclear damage is evidenced by nucleolar segregation and condensation of the chromatin.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bueker, E. D., Implantation of tumors in the hind limb field of the embryonic chick and developmental response of the lumbosacral nervous system, Anat. Rec. 102: 369–390, 1948.PubMedCrossRefGoogle Scholar
  2. 2.
    Levi-Montalcini, R., and Hamburger, V., A diffusible agent of mouse sarcoma producing hyperplasia of sympathetic ganglia and hyperneurotization of viscera in the chick embryo, J. Exp. Zoo. 123: 233–288, 1953.CrossRefGoogle Scholar
  3. 3.
    Levi-Montalcini, R., and Angeletti, P. U., Growth control of the sympathetic system by a specific protein factor, Q. Rev. Biol. 36: 99–108, 1961.PubMedCrossRefGoogle Scholar
  4. 4.
    Levi-Montalcini, R., and Angeletti, P. U., Essential role of the nerve growth factor in the survival and maintenance of dissociated sensory and sympathetic embryonic nerve cells in vitro, Dev. Biel. 7: 653–659, 1963.CrossRefGoogle Scholar
  5. 5.
    Levi-Montalcini, R., Chemical stimulation of nerve growth, in: Symposium on Chemical Basis of Development, Vol. 234, pp. 646–6664, Johns Hopkins University, McCollum-Pratt Institute, 1968.Google Scholar
  6. 6.
    Angeletti, P. U., Angeletti, R. H., Frazier, W. A., and Bradshaw, R. A., Nerve growth factor, in: Proteins of the Nervous System (D. J. Schneider, R. H. Angeletti, R. A. Bradshaw, A. Grasso, and B. W. Moore, eds.), pp. 133–154, Raven Press, New York, 1973.Google Scholar
  7. 7.
    Levi-Montalcini, R., and Booker, B., Destruction of the sympathetic ganglia in mammals by an antiserum to a nerve growth protein, Proc. Natl. Acad. Sci. U.S.A. 46: 384–391, 1960.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Levi-Montalcini, R. and Angeletti, P. U., Immunosympathectomy, Pharmacol. Rev. 18: 619–6628, 1966.PubMedGoogle Scholar
  9. 9.
    Levi-Montalcini, R., Caramia, F., and Angeletti, P. U., Alterations in the fine structure of nucleoli in sympathetic neurons following NGF-antiserum treatment. Brain Res. 12: 54–73, 1969.PubMedCrossRefGoogle Scholar
  10. 10.
    Angeletti, P. U., Luizzi, A., Levi-Montalcini, R., and Gandini-Attardi, D., Effect of a nerve growth factor on glucose metabolism by sympathetic and sensory nerve cells, Biochim. Biophys. Acta 90: 445–450, 1964.PubMedCrossRefGoogle Scholar
  11. 11.
    Angeletti, P. U., Luizzi, A., and Levi-Montalcini, R., Stimulation of lipid biosyn-thesis in sympathetic and sensory ganglia by a specific nerve growth factor, Biochim. Biophys. Acta 84: 778–781, 1964.PubMedGoogle Scholar
  12. 12.
    Angeletti, P. U., Gandini-Attardi, D., Toschi, G., Salvi, M. L., and LeviMontalcini, R., Metabolic aspects of the effect of nerve growth factor on sympathetic and sensory ganglia: Protein and ribonucleic acid synthesis, Biochim. Biophys. Acta 95: 111–120, 1965.PubMedCrossRefGoogle Scholar
  13. 13.
    Partlow, L. M., and Larrabee, M. G., Effects of a nerve growth factor, embryo age and metabolic inhibitors on growth of fibres and on synthesis of ribonucleic acid and protein in embryonic sympathetic ganglia, J. Neurochem. 18: 2101–2118, 1974.CrossRefGoogle Scholar
  14. 14.
    Yamada, K. M., and Wessells, N. K., Axon elongation: Effect of nerve growth factor on microtubule protein, Exp. Cell Res. 66: 346–352, 1971.PubMedCrossRefGoogle Scholar
  15. 15.
    Mizel, S. B., and Bamburg, J. R., Studies on the action of nerve growth factor. Role of RNA and protein synthesis in the process of neunte outgrowth, Dev. Biol. 49: 20–28, 1976.PubMedCrossRefGoogle Scholar
  16. 16.
    Levi-Montalcini, R., The nerve growth factor: Its mode of action on sensory and sympathetic nerve cells, Harvey Lect. 60: 217–259, 1966.PubMedGoogle Scholar
  17. 17.
    Thoenen, H., Angeletti, P. U., Levi-Montalcini, R., and Kettler, R., Selective induction by nerve growth factor of tyrosine hydroxylase and dopamine ß-hydroxylase in the rat superior cervical ganglia, Proc. Natl. Acad. Sci. U.S.A. 68: 1598–1602, 1971.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Stockel, K., Solomon, F., Paravicini, U., and Thoenen, H., Dissociation between effects of nerve growth factor on tyrosine hydrolase and tubulin synthesis in sympathetic ganglia, Nature (London) 250: 150–151, 1974.CrossRefGoogle Scholar
  19. 19.
    Thoenen, H., Saner, A., Angeletti, P. U., and Levi-Montalcini, R., Increased activity of choline acetyltransferase in sympathetic ganglia after prolonged administration of nerve growth factor, Nature (London), New Biol. 236: 26–28, 1972.CrossRefGoogle Scholar
  20. 20.
    Phillipson, O. T., and Sandler, M., The influence of nerve growth factor, potassium depolarization and dibutyryl (cyclic) adenosine 3’,5’-monophosphate on explant cultures of chick embryo sympathetic ganglia, Brain Res. 90: 273–281, 1975.CrossRefPubMedGoogle Scholar
  21. 21.
    Black, I. B., Hendry, I. A., and Iversen, K. L., Trans-synaptic regulation of growth and development of adrenergic neurons in a mouse sympathetic ganglion, Brain Res. 34: 229–240, 1971.PubMedCrossRefGoogle Scholar
  22. 22.
    Black, I. B., Hendry, I. A., and Iversen, L. L., Effect of surgical decentralization and nerve growth factor on the maturation of adrenergic neurons in a mouse sympathetic ganglion, J. Neurochem. 19: 1367–1377, 1972.PubMedCrossRefGoogle Scholar
  23. 23.
    Hendry, I. A., and Iversen, L. L., Reducion in the concentration of nerve growth factor in mice after siaectomy and castration, Nature (London) 243: 500–504, 1973.CrossRefGoogle Scholar
  24. 24.
    Stoeckel, K., Hendry, I. A., and Thoenen, H., Retrograde axonal transport of nerve growth factor, Experientia 29: 767, 1973.CrossRefGoogle Scholar
  25. 25.
    Black, I. B., Bloom, F. E., Hendry, I. A., and Iversen, L. L., Growth and development of sympathetic ganglion: Maturation of transmitter enzymes and synapse formation in the mouse superior cervical ganglion, J. Physiol. (London) 215: 24–25, 1971.Google Scholar
  26. 26.
    Thoenen, H., Saner, A., Kettler, R., and Angeletti, P. U., Nerve growth factor and preganglionic cholinergic nerves; their relative importance to the development of the terminal adrenergic neuron, Brain Res. 44: 593–602, 1972.PubMedCrossRefGoogle Scholar
  27. 27.
    Levi-Montalcini, R., and Booker, B., Excessive growth of the sympathetic ganglia evoked by a protein isolated from mouse salivary glands, Proc. Natl. Acad. Sci. U.S.A. 46: 373–384, 1960.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Olson, L., Outgrowth of sympathetic adrenergic neurons in mice treated with a nerve-growth factor (NGF), Z. Zellforsch. Mikrosk. Anat. 81: 155–173, 1967.CrossRefGoogle Scholar
  29. 29.
    Crain, S. M., and Peterson, E. R., Onset and development of functional inter-neuronal connections in explants of rat spinal cord ganglia during maturation in culture, Brain Res. 6: 750–762, 1967.PubMedCrossRefGoogle Scholar
  30. 30.
    Crain, S. M., and Peterson, E. R., Enhanced afferent synaptic functions in fetal mouse spinal cord-sensory ganglion explants following NGF-induced ganglion hypertrophy, Brain Res. 79: 145–152, 1974.PubMedCrossRefGoogle Scholar
  31. 31.
    Crain, S. M., Tissue culture models of development of behavior and the nervous system, in: Aspects of Neurogenesis, Vol. 2 (G. Gottlieb, ed.), pp. 69–44, Academic Press, New York, 1974.CrossRefGoogle Scholar
  32. 32.
    Mizel, S. B., and Bamburg, J. R., Studies on the action of nerve growth factor. 1. Characterization of simplified in vitro culture system for dorsal root and sympathetic ganglia, Dev. Biol. 49: 11–19, 1976.CrossRefPubMedGoogle Scholar
  33. 33.
    Roisen, F. J., Murphy, R. A., Pichichero, M. E., and Braden, W. G., Cyclic adenosine monophosphate stimulation of axonal elongation, Science 175: 73–74, 1972.PubMedCrossRefGoogle Scholar
  34. 34.
    Haas, D. C., Hier, D. B., Arnason, B. G. W., and Young, M., On a possible relationship of cyclic AMP to the mechanism of action of nerve growth factor, Proc. Soc. Exp. Biol. Med. 140: 45–47, 1972.PubMedCrossRefGoogle Scholar
  35. 35.
    MacKay, A. V. P., and Iversen, L. L., Increased tyrosine hydroxylase activity of sympathetic ganglia cultured in the presence of dibutyryl cyclic AMP, Brain Res. 48: 424–426, 1972.PubMedCrossRefGoogle Scholar
  36. 36.
    Keen, P., and McLean, W. G., Effect of dibutyryl cyclic AMP on levels of dopamine ß-hydroxylase in isolated superior cervical ganglia, Arch. Pharmacol. 275: 465–469, 1972.CrossRefGoogle Scholar
  37. 37.
    Roisen, F. J., and Murphy, R. A., Neurite development in vitro. II. The role of microfilaments and microtubules in dibutyryl adenosine 3’,5’-cyclic monophosphate and nerve growth factor stimulated maturation, J. Neurobiol. 4: 397–412, 1973.PubMedCrossRefGoogle Scholar
  38. 38.
    Hier, D. B., Arnason, B. G. W., and Young, M., Studies on the mechanism of action of nerve growth factor, Proc. Nat. Acad. Sci. U.S.A. 69: 2268–2272, 1972.CrossRefGoogle Scholar
  39. 39.
    Hier, D. B., Arnason, B. G. W., and Young, M., Nerve growth factor: Relation-ship to the cyclic AMP system of sensory ganglia, Science 182: 79–81, 1973.PubMedCrossRefGoogle Scholar
  40. 40.
    Nikodijevic, B., Nikodijevic, O., Yu, M. W., Pollard, H., and Guroff, G., The effect of nerve growth factor on cyclic AMP levels in superior cervical ganglia of the rat, Proc. Nat. Acad. Sci. U.S.A. 72: 4769–4771, 1975.CrossRefGoogle Scholar
  41. 41.
    Goldstein, M. N., Land, V., and Bradshaw, R., Stimulation of human neuroblastomas in vitro with nerve growth factor, Proc. Am. Assoc. Cancer Res. 13: 89, 1972.Google Scholar
  42. 42.
    Waris, T., Rechardt, L., and Waris, P., Differentiation of neuroblastoma cells induced by nerve growth factor in vitro, Experientia 29: 1128–1129, 1973.PubMedCrossRefGoogle Scholar
  43. 43.
    Reynolds, C. P., and Perez-Polo, J. R., Human neuroblastoma: Glial induced morphological differentiation, Neurosci. Lett. 1: 91–97, 1975.PubMedCrossRefGoogle Scholar
  44. 44.
    Tischler, A. S., Dichter, M., Biales, B., and Posner, M., The neural properties of pheochromocytoma cells in culture-Preliminary observations, Lab. Invest. 32: 437–438, 1975.Google Scholar
  45. 45.
    Kadin, M. E., and Bensch, K. G., Comparison of pheocromocytes with ganglion cells and neuroblasts grown in vitro, Cancer 27: 1148–1160, 1971.PubMedCrossRefGoogle Scholar
  46. 46.
    Tischler, A. S., and Greene, L. A., Nerve growth factor-induced process formation by cultured rat pheochromocytoma cells, Nature (London) 258: 341–342, 1975.CrossRefGoogle Scholar
  47. 47.
    Hervonen, A., and Kanerva, L., Neuronal differentiation in human fetal adrenal medulla, Int. J. Neurosci. 5: 43–46, 1973.PubMedCrossRefGoogle Scholar
  48. 48.
    Kolber, A. R., Goldstein, M. N., and Moore, B. W., Effect of nerve growth factor on the expression of colchicine–binding activity and 14–3–2–protein in an established line of human neuroblastoma, Proc. Nat. Acad. Sci. U.S.A. 71: 4203 – 4207, 1974.CrossRefGoogle Scholar
  49. 49.
    Revoltella, R., Bertolini, L., and Pediconi, M., Unmasking of nerve growth factor membrane-specific binding sites in synchronized murine C1300 neuroblastoma cells, Exp. Cell Res. 85: 89–94, 1974.PubMedCrossRefGoogle Scholar
  50. 50.
    Revoltella, R., Bosman, C., and Bertolini, L., Detection of nerve growth factor binding sites on neuroblastoma cells by rosette formation, Cancer Res. 35: 890–895, 1975.PubMedGoogle Scholar
  51. 51.
    Prasad, K. N., Differentiation of neuroblastoma cells in culture, Biol. Rev. 50: 129–165, 1975.CrossRefPubMedGoogle Scholar
  52. 52.
    Lempinen, M., Extra-adrenal chromaffin tissue of the rat and the effect of cortical hormones on it, Acta Physiol. Scand., Suppl. 231 62: 7–91, 1964.Google Scholar
  53. 53.
    Oger, J., Arnason, B. G. W., Pantazis, N., Lehrich, J., and Young, M., Synthesis of nerve growth factor by L and 3T3 cells in culture, Proc. Natl. Acad. Sci. U.S.A. 71: 1554–1558, 1974.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Young, M., Oger, J., Blanchard, M. H., Asdourian, H., Amos, H., and Amason, B. G. W., Secretion of a nerve growth factor by primary chick fibroblast cultures, Science 187: 361–362, 1975.PubMedCrossRefGoogle Scholar
  55. 55.
    Murphy, R. A., Pantazis, N. J., Arnason, B. G. W., and Young, M., Secretion of a nerve growth factor by mouse neuroblastoma cells in culture, Proc. Natl. Acad. Sci. U.S.A. 72: 1895–1898, 1975.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Arnason, B. G. W., Oger, J., Pantazis, N. J., and Young, M., Secretion of nerve growth factor by cancer cells, J. Clin. Invest. 53: 2a, 1974.Google Scholar
  57. 57.
    Longo, A. M., and Penhoet, E. E., Nerve growth factor in rat glioma cells, Proc. Natl. Acad. Sci. U.S.A. 71: 2347–2349, 1974.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Saide, J. D., Murphy, R. A., Canfield, R. E., Skinner, J., Robinson, D. R., Amason, B. G. W., and Young, M., Nerve growth factor in human serum and its secretion by human cells in culture, J. Cell Biol. 67 376, 1975.Google Scholar
  59. 59.
    Bill, A. H., Seibert, E. S., Beckwith, J. B., Hartmann, J. R., Nerve growth factor and nerve growth stimulating activity in sera from normal and neuroblastoma patients, J. Natl. Cancer List. 43: 1221–1230, 1969.Google Scholar
  60. 60.
    Varon, S., Nomura, J., and Shooter, E. M., Reversible dissociation of the mouse nerve growth factor protein into different subunits, Biochemistry 7: 1296–1303, 1968.PubMedCrossRefGoogle Scholar
  61. 61.
    Bradshaw, R. A., and Young, M., Nerve growth factor—Recent developments and perspectives, Biochem. Pharmacol. 25: 1445–1449, 1976.PubMedCrossRefGoogle Scholar
  62. 62.
    Bocchini, V., and Angeletti, P. U., The nerve growth factor. Purification of a 30,000-molecular-weight protein, Proc. Natl. Acd. Sci. U.S.A. 64: 787–794, 1969.CrossRefGoogle Scholar
  63. 63.
    Young, M., Saide, J. D., Murphy, R. A., and Arnason, B. G. W., Molecular size of nerve growth factor in dilute solution, J. Biol. Chem. 251: 459–464, 1976.PubMedGoogle Scholar
  64. 64.
    Frazier, W. A., Boyd, L. F., and Bradshaw, R. A., Interaction of nerve growth factor with surface membranes: Biological competence of insolubilized nerve growth factor, Proc. Natl. Acad. Sci. U.S.A. 70: 2931–2935, 1973.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Stach, R. W., and Shooter, E. M., The biological activity of cross-linked /3 nerve growth factor protein, J. Biol. Chem. 249: 6668–6674, 1974.PubMedGoogle Scholar
  66. 66.
    Cohen, S., and Levi-Montalcini, R., A nerve growth-stimulating factor isolated from snake venom, Proc. Natl. Acad. Sci. U.S.A. 42: 571–577, 1956.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hogue-Angeletti, R. A., Frazier, W. A., Jacobs, J. W., Niall, H. D., and Bradshaw, R. A., Purification, characterization, and partial amino acid sequence of nerve growth factor from cobra venom, Biochemistry 15: 26–34, 1976.PubMedCrossRefGoogle Scholar
  68. 68.
    Angeletti, R. H., Hermodson, M. A., and Bradshaw, R. A., Amino acid sequences of mature 2.5S nerve growth factor. II. Isolation and characterization of the thermolytic and peptic peptides and the complete covalent structure, Biochemistry 12: 100–115, 1973.PubMedCrossRefGoogle Scholar
  69. 69.
    Angeletti, R. H., Bradshaw, R. A., and Wade, R. D., Subunit structure and amino acid composition of mouse submaxillary gland nerve growth factor, Biochemistry 10: 463–469, 1971.PubMedCrossRefGoogle Scholar
  70. 70.
    Greene, L. A., Varon, S., Piltch, A., and Shooter, E. M., Substructure of the ß-subunit of mouse 7S nerve growth factor, Neurobiology 1: 37–48, 1971.Google Scholar
  71. 71.
    Bocchini, V., The nerve growth factor amino acid composition and physic chemical properties, Euro. J. Biochem. 15: 127–131, 1970.CrossRefGoogle Scholar
  72. 72.
    Frazier, W. A., Angeletti, R. H., and Bradshaw, R. A., Nerve growth factor and insulin, Science 176: 482–488, 1972.PubMedCrossRefGoogle Scholar
  73. 73.
    Frazier, W. A., Hogue-Angeletti, R. A., Sherman, R., and Bradshaw, R. A., Topography of mouse 2.5S nerve growth factor reactivity of tyrosine and tryptophan, Biochemistry 12: 3281–3293, 1973.PubMedCrossRefGoogle Scholar
  74. 74.
    Cuatrecasas, P., Interaction of insulin with the cells membrane: The primary action of insulin, Proc. Natl. Acad. Sci. U.S.A. 63: 450–457, 1969.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Eayrs, J. T., Influence of the thyroid on the central nervous system, Brit. Med. Bull. 16: 122–127, 1960.PubMedCrossRefGoogle Scholar
  76. 76.
    Kollros, J. J., Localized maturation of lid-closure reflex mechanism by thyroid implants into tadpole hind-brain, Proc. Soc. Exp. Biol. Med. 49: 204–206, 1942.CrossRefGoogle Scholar
  77. 77.
    Weiss, P., and Rossetti, F., Growth responses of opposite sign among different neuron types exposed to thyroid hormones, Proc. Natl. Acad. Sci. U.S.A. 37: 540–556, 1951.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Brown, A. W., Bronstein, I. P., and Kraines, R., Hypothyroidism and cretinism in childhood. VI. Influence of thyroid therapy on mental growth, Am. J. Dis. Child. 57: 517–523, 1939.CrossRefGoogle Scholar
  79. 79.
    Eayrs, J. T., and Horn, G., The development of cerebral cortex in hypothyroid and starved rats, Anat. Rec. 121: 53–61, 1955.PubMedCrossRefGoogle Scholar
  80. 80.
    Hamburgh, M., Sobel, E. H., Koblin, R., and Rinestone, A., Passage of thyroid hormone across the placenta in intact and hypophysectomized rats, Anat. Rec. 144: 219–227, 1962.PubMedCrossRefGoogle Scholar
  81. 81.
    Eayrs, J. T., and Taylor, S. H., The effect of thyroid deficiency induced by methyl thiouracil on the maturation of the central nervous system, J. Anat. 85: 350–358, 1951.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Eayrs, J. T., The cerebral cortex of normal and hypothyroid rats, Acta Anat. 25: 160–183, 1955.PubMedCrossRefGoogle Scholar
  83. 83.
    Eayrs, J. T., Thyroid and central nervous development, in: Scientific Basis of Medicine Annual Reviews (J. P. Ross, ed.), pp. 317–339, Athlone Press, London, 1966.Google Scholar
  84. 84.
    Balazs, R., Kovacs, S., Teichgraber, P., Cocks, W. A., and Eayrs, J. T., Biochemical effects of thyroid deficiency on the developing brain, J. Neurochem. 15: 1335–1349, 1968.PubMedCrossRefGoogle Scholar
  85. 85.
    Hamburgh, M., Evidence for a direct effect of temperature and thyroid hormone on myelinogenesis in vitro, Dev. Biol. 13: 15–30, 1966.PubMedCrossRefGoogle Scholar
  86. 86.
    Myani, N. B., and Cole, L. A., Effect of thyroxine on the deposition of phospholipids in the brain in vivo and on the synthesis of phospholipids by brain slices, J. Neurochem. 13: 1299–1307, 1966.CrossRefGoogle Scholar
  87. 87.
    Reiss, J. M., Reiss, M., and Wyatt, A., Action of thyroid hormones on brain metabolism of newborn rats, Proc. Soc. Exp. Biol. Med. 93:19–22, 1956.CrossRefGoogle Scholar
  88. 88.
    Hoexter, F. M., The effect of thyroidectomy on the 02 uptake of brain cortex and liver in the rat, Endocrinology 54: 1–4, 1954.PubMedCrossRefGoogle Scholar
  89. 89.
    Fazekas, J. F., Graves, F. B., and Alman, R. W., The influence of the thyroid on cerebral metabolism, Endocrinology 48: 169–174, 1951.PubMedCrossRefGoogle Scholar
  90. 90.
    Hamburgh, M., Lynn, E., and Weiss, E. P., Analysis of the influence of thyroid hormone on prenatal and postnatal maturation of the rat, Anat. Rec. 150: 147–162, 1964.PubMedCrossRefGoogle Scholar
  91. 91.
    Schapiro, S., Some physiological, biochemical and behavioral consequences of neonatal hormone administration: Cortisol and thyroxine, Gen. Comp. Endocrinol. 10: 214–228, 1968.PubMedCrossRefGoogle Scholar
  92. 92.
    Hamburgh, M., and Flexner, L. B., Biochemical and physiological differentiation during morphogenesis. XXI. Effect of hypothyroidism and hormone therapy on enzyme activities of the developing cerebral cortex of the rat, J. Neurochem. 1: 279–288, 1957.PubMedCrossRefGoogle Scholar
  93. 93.
    Garcia Argiz, C. A., Pasquini, J. M., Kaplún, B., and Gomez, C. J., Hormonal regulation of brain development. II. Effect of neonatal thyroidectomy on succinate dehydrogenase and other enzymes in developing cerebral cortex and cerebellum of the rat, Brain Res. 6: 635–646, 1967.CrossRefGoogle Scholar
  94. 94.
    Geel, S. E., and Timiras, P. S., Influence of neonatal hypothyroidism and of thyroxine on the acetylcholinesterase and cholinesterase activities in the developing central nervous system of the rat, Endocrinology 80: 1069–1074, 1967.PubMedCrossRefGoogle Scholar
  95. 95.
    Klee, C. B., and Sokoloff, L., Mitochondrial differences in mature and immature brain. Influence on rate of amino acid incorporation into protein and responses to thyroxine, J. Neurochem. 11: 709–716, 1964.PubMedCrossRefGoogle Scholar
  96. 96.
    Gelber, S., Campbell, P. L., Deibler, G. E., and Sokoloff, L., Effects of L-thyroxine on amino acid incorporation into protein in mature and immature rat brain, J. Neurochem. 11: 221–229, 1964.PubMedCrossRefGoogle Scholar
  97. 97.
    Sokoloff, L., Action of thyroid hormones and cerebral development, Am. J. Dis. Child. 114: 498–506, 1967.PubMedGoogle Scholar
  98. 98.
    Geel, S. E., Valcana, T., and Timiras, P. S., Effect of neonatal hypothyroidism and of thyroxine on L-[14CJleucine incorporation in protein in vivo and the relationship to ionic levels in the developing brain of the rat, Brain Res. 4: 143–150, 1967.PubMedCrossRefGoogle Scholar
  99. 99.
    Geel, S. E., and Timiras, P. S., The influence of neonatal hypothyroidism and of thyroxine on the ribonucleic acid and deoxyribonucleic acid concentrations of rat cerebral cortex, Brain Res. 4: 135–142, 1967.PubMedCrossRefGoogle Scholar
  100. 100.
    Hamburgh, M., An analysis of the action of thyroid hormone on development based on in vivo and in vitro studies, Gen. Comp. Endocrinol. 10: 198–213, 1968.PubMedCrossRefGoogle Scholar
  101. 101.
    Beaudoin, A. R., The development of lateral motor column cells in the lumbosacral cord in Rana pipiens, Anat. Rec. 121: 81–91, 1955.PubMedCrossRefGoogle Scholar
  102. 102.
    Race, J., Jr., Thyroid hormone control of development of lateral motor column cells in the lumbo-sacral cord in hypophysectomized Rana pipiens, Gen. Comp. Endocrinol. 1: 322–331, 1961.PubMedCrossRefGoogle Scholar
  103. 103.
    Bornstein, M. B., and Murray, M. R., Serial observation on patterns of growth, myelin formation, maintenance and degeneration in cultures of newborn rat and kitten cerebellum, J. Biophys. Biochem. Cytol. 4: 499–504, 1958.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zamenhof, S., Stimulation of cortical-cell proliferation by the growth hormone. III. Experiments on albino rats, Physiol. Zool. 15: 281–292, 1942.CrossRefGoogle Scholar
  105. 105.
    Clendinnen, B. G., and Eayrs, J. T., The anatomical and physiological effects of prenatally administered somatotrophin on cerebral development in rats, J. Endocrinol. 22: 183–193, 1961.PubMedCrossRefGoogle Scholar
  106. 106.
    Zamenhof, S., Mosley, J., and Schuller, E., Stimulation of the proliferation of cortical neurons by prenatal treatment with growth hormone, Science 152: 1396–1397, 1966.PubMedCrossRefGoogle Scholar
  107. 107.
    Altman, J., and Das, G. D., Post-natal origin of microneurones in the rat brain, Nature (London) 207: 953–956, 1965.CrossRefGoogle Scholar
  108. 108.
    Altman, J., and Das, G. D., Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats, J. Comp. Neurol. 124: 319–336, 1965.PubMedCrossRefGoogle Scholar
  109. 109.
    Block, J. B., and Essman, W. B., Growth hormone administration during pregnancy: A behavioural difference in offspring of rats, Nature (London) 205: 1136–1137, 1965.CrossRefGoogle Scholar
  110. 110.
    Gitlin, D., Kumate, J., and Morales, C., Metabolism and maternofetal transfer of human growth hormone in the pregnant woman at term, J. Clin. Endocrinol. 25: 1599–1608, 1965.CrossRefGoogle Scholar
  111. 111.
    Laron, Z., Pertzelan, A., Mannheimer, S., Goldman, J.,and Guttmann, S., Lack of placental transfer of human growth hormone, Acta Endocrinol. 53: 687–6692, 1966.PubMedCrossRefGoogle Scholar
  112. 112.
    Zamenhof, S., Van Marthens, E., and Margolis, F. L., DNA (cell number) and protein in neonatal brain: Alteration by maternal dietary protein restriction, Science 160: 322–323, 1968.PubMedCrossRefGoogle Scholar
  113. 113.
    Gomez, C. J., Ghittoni, N. E., and Dellacha, J. M., Effect of L-thyroxine or somatotrophin on body growth and cerebral development in neo-natal thyroidectomized rats, Life Sci. 5: 243–246, 1966.CrossRefGoogle Scholar
  114. 114.
    Hörstadius, S., The Neural Crest, Oxford University Press, London, 1950.Google Scholar
  115. 115.
    Weston, J. A., The migration and differentiation of neural crest cells, Adv. Morphog. 8: 41–114, 1970.PubMedCrossRefGoogle Scholar
  116. 116.
    Johnston, M. C., A radioautographic study of the migration and fate of cranial neural crest cells in the chick embryo, Anat. Rec. 156: 143–156, 1966.PubMedCrossRefGoogle Scholar
  117. 117.
    LeDouarin, N. M., and Teillet, M. M., Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neuroectodermal mesenchymal derivatives using a biological cell marking technique, Dev. Biol. 41: 162–184, 1974.CrossRefGoogle Scholar
  118. 118.
    Noden, D. M., An analysis of migratory behavior of avian cephalic neural crest cells, Dev. Biol. 42: 106–130, 1975.PubMedCrossRefGoogle Scholar
  119. 119.
    Weston, J. A., A radioautographic analysis of the migration and localization of trunk neural crest cells in the chick, Dev. Biol. 6: 279–310, 1963.PubMedCrossRefGoogle Scholar
  120. 120.
    Hamburger, V., and Levi-Montalcini, R., Proliferation, differentiation, and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions, J. Exp. Zool. 111: 457–500, 1949.PubMedCrossRefGoogle Scholar
  121. 121.
    Yates, R. D., A study of cell deivision in chick embryo ganglia, J. Exp. Zool. 147: 167–182, 1961.PubMedCrossRefGoogle Scholar
  122. 122.
    Maxwell, G. D., Cell cycle changes during neural crest cell differentiation in vitro, Dev. Biot 49: 66–79, 1976.CrossRefGoogle Scholar
  123. 123.
    Weiss, P., Neurogenesis, in: Analysis of Development (B. H. Willier, P. Weiss, and V. Hamburger, eds.), 346 pp., Saunders, Philadelphia, 1955.Google Scholar
  124. 124.
    Sperry, R. W., Embryogenesis of behavioral nerve nets, in: Organogenesis (R. L. DeHaan and H. Ursprung, eds.), 161 pp., Holt, Rinehart and Winston, New York, 1965.Google Scholar
  125. 125.
    Alder, R., Cell interactions and histogenesis in embryonic neural aggregates, Exp. Cell Res. 77: 367–375, 1973.CrossRefGoogle Scholar
  126. 126.
    Morris, J. E., and Moscona, A. A., The induction of glutamine synthetase in cell aggregates of embryonic neural retina: Correlations with differentiation and multi-cellular organization, Dev. Biol. 25: 420–444, 1971.CrossRefPubMedGoogle Scholar
  127. 127.
    Adler, R., Teitelman, G., and Suburo, A. M., Cell interactions and the regulation of cholinergic enzymes during neural differentiation in vitro, Dev. Biol. 50: 48–57, 1976.PubMedCrossRefGoogle Scholar
  128. 128.
    Filogamo, G., Recherches expérimentales sur l’activité des cholinestérases spécifique et non spécifique dans le développement du lobe optique du poulet, Arch. Biol. 71: 159–198, 1960.Google Scholar
  129. 129.
    Marchisio, P. C., Choline acetyltransferase (ChAc) activity in developing chick optic centres and the effects of monolateral removal of retina at an early embryonic stage and at hatching, J. Neurochem. 16: 665–671, 1969.PubMedCrossRefGoogle Scholar
  130. 130.
    Burt, A. M., and Narayanan, C. H., Effect of extrinsic neuronal connections on development of acetylcholinesterase and choline acetyltransferase activity in the ventral half of the chick spinal cord, Exp. Neural. 29: 201–210, 1970.CrossRefGoogle Scholar
  131. 131.
    Karczmar, A. G., Srinnivasan, R., and Bernsohn, J., Cholinergic functions in the developing fetus, in: Fetal Pharmacology (L. Boréus, ed.), pp. 127–177, Raven Press, New York, 1973.Google Scholar
  132. 132.
    Maxwell, G. D., Cell cyclic changes during neural crest cell differentiation in vitro, Dev. Biol. 49: 66–79, 1976.PubMedCrossRefGoogle Scholar
  133. 133.
    Dorris, F., Differentiation of pigment cells in tissue cultures of chick neural crest, Proc. Soc. Exp. Biol. Med. 34: 448–449, 1936.CrossRefGoogle Scholar
  134. 134.
    Cohen, A. M., Factors directing the expression of sympathetic nerve traits in cells of neural crest origin, J. Exp. Zool. 179: 167–182, 1972.PubMedCrossRefGoogle Scholar
  135. 135.
    Norr, S. C., In vitro analysis of sympathetic neuron differentiation from chick neural crest cells, Dev. Biol. 34: 16–38, 1973.PubMedCrossRefGoogle Scholar
  136. 136.
    Lee, H., Inhibition of neurulation and interkinetic nuclear migration by concanavalin A in explanted early chick embryos, Dev. Biol. 48: 392–399, 1976.PubMedCrossRefGoogle Scholar
  137. 137.
    Bowman, P., The effect of 2,4-dinitrophenol on the development of early chick embryos, J. Embryo!. Exp. Morphol. 17: 425–431, 1967.Google Scholar
  138. 138.
    Lee, H., and Poprycz, W., Effect of actinomycin D on explanted early chick embryos, Growth 34: 437–454, 1970.PubMedGoogle Scholar
  139. 139.
    Linville, P. G., and Shepard, T. H., Neural tube closure defects caused by cytochalasin B, Nature (London) New Biol. 236: 246–247, 1972.CrossRefGoogle Scholar
  140. 140.
    Lee, H., Deshpande, A. K., and Kalmus, G. W., Studies on effects of 5-bromodeoxyuridine on the development of explanted early chick embryos, J. Embryo!. Exp. Morphol. 32: 835–848, 1974.Google Scholar
  141. 141.
    Sauer, F. C., The interkinetic migration of embryonic epithelial nuclei, J. Morpho!. 60: 1–11, 1936.CrossRefGoogle Scholar
  142. 142.
    Watterson, R. L., Structure and mitotic behavior of the early neural tube, in: Organogenesis (R. L. DeHaan, and H. Ursprung, eds.), pp. 129–159, Holt, Rinehart and Winston, New York, 1965.Google Scholar
  143. 143.
    Levi-Montalcini, R., and Angeletti, P. U., Essential role of the nerve growth factor in survival and maintenance of dissociated sensory and sympathetic embryonic nerve cells in vitro, Dev. Biol. 7: 653–659, 1963.CrossRefGoogle Scholar
  144. 144.
    Cohen, A. I., Nicol, E. C., and Richter, W., Nerve growth factor requirement for development of dissociated embronic sensory and sympathetic ganglia in culture, Proc. Soc. Exp. Biol. Med. 116: 784–789, 1964.PubMedCrossRefGoogle Scholar
  145. 145.
    Varon, S., and Raiborn, C., Dissociation, fractionation and culture of chick embryo sympathetic ganglionic cells, J. Neurocytol. 1: 211–221, 1972.CrossRefPubMedGoogle Scholar
  146. 146.
    Varon, S., Raiborn, C., and Tyszka, E., In vitro studies of dissociated cells from newborn mouse dorsal root ganglia, Brain Res. 54: 51–63, 1973.PubMedCrossRefGoogle Scholar
  147. 147.
    Murray, M. R., and Benitez, H. H., Action of heavy water (D2O) on growth and development of isolated nervous tissue, in: Growth of the Nervous System (G. E. W. Wolstenholme and M. O’Connor, eds.), pp. 148–178, Little, Brown, 1968.Google Scholar
  148. 148.
    Seeds, N. W., Gilman, A. G., Amano, T., and Nirenberg, M. W., Regulation of axon formation by clonal lines of a neural tumor, Proc. Natl. Acad. Sci. U.S.A. 66: 160–167, 1970.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Prasad, K. N., and Kumar, S., Role of cyclic AMP in differentiation of human neuroblastoma cells in culture, Cancer 36: 1338–1343, 1975.PubMedCrossRefGoogle Scholar
  150. 150.
    Prasad, K. N., Gilmer, K., and Kumar, S., Morphologically “differentiated” mouse neuroblastoma cells induced by non-cyclic AMP agents. Levels of cyclic AMP, nucleic acid and protein, Proc. Soc. Exp. Biol. Med. 143: 1168–1171, 1973.PubMedCrossRefGoogle Scholar
  151. 151.
    Kates, J. R., Winterton, R., and Schlesinger, K., Induction of acetylcholinesterase activity in mouse neuroblastoma tissue culture cells, Nature (London) 229: 345–346, 1971.CrossRefGoogle Scholar
  152. 152.
    Waymire, J. C., Weiner, N., and Prasad, K. N., Regulation of tyrosine hydroxylase activity in cultured mouse neuroblastoma cells. Elevation induced by analogs of adenosine 3’,5’-cyclic monophosphate, Proc. Natl. Acad. Sci. U.S.A. 69: 2241–2245, 1972.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Prasad, K. N., and Gilmer, K. N., Demonstration of dopamine-sensitive adenylate cyclase in malignant neuroblastoma cells and change in sensitivity of adenylate cyclase to catecholamines in “differentiated” cells, Proc. Natl. Acad. Sci. U.S.A. 71: 2525–2529, 1974.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Prasad, K. N., X-ray-induced morphological differentiation of mouse neuroblastoma cells in vitro, Nature (London) 234: 471–474, 1971.CrossRefGoogle Scholar
  155. 155.
    Nelson, P., Ruffner, W., and Nirenberg, M., Neuronal tumor cells with excitable membranes growth in vitro, Proc. Natl. Acad. Sci. U.S.A. 64: 104–110, 1969.CrossRefGoogle Scholar
  156. 156.
    Prasad, K. N., Differentiation of neuroblastoma cells in culture, Biol. Rev. 50: 129–165, 1975.CrossRefPubMedGoogle Scholar
  157. 157.
    Prasad, K. N., Differentiation of neuroblastoma cells induced in culture by 6-thioguanine, Int. J. Cancer 12: 631–635, 1973.PubMedCrossRefGoogle Scholar
  158. 158.
    Byfield, J. E., and Karlsson, V., Inhibition of replication and differentiation in malignant mouse neuroblastoma, Cell Differ. 2: 55–64, 1973.PubMedCrossRefGoogle Scholar
  159. 159.
    Schubert, D., and Jacob, F., 5-Bromodeoxyuridine-induced differentiation of a neuroblastoma, Proc. Natl. Acad. Sci. U.S.A. 67: 247–254, 1970.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Prasad, K. N., Mandai, B., and Kumar, S., Human neuroblastoma cell culture. Effect of 5-bromodeoxyuridine on morphological differentiation and levels of neural enzymes, Proc. Soc. Exp. Biol. Med. 144: 38–42, 1973.PubMedCrossRefGoogle Scholar
  161. 161.
    Monard, D., Solomon, F., Rentsch, M., and Gysin, R., Glial-induced morphological differentiation in neuroblastoma cells, Proc. Nati. Acad. Sci. U.S.A. 70: 1894–1897, 1973.CrossRefGoogle Scholar
  162. 162.
    Ross, J., Granett, S., and Rosenbaum, J. L., Differentiation of neuroblastoma cells in hypertonic medium, J. Cell Biol. 59: 291a, 1973.Google Scholar
  163. 163.
    Miller, C. A., and Levine, E. M., Neuroblastoma synchronization of neurite outgrowth in cultures grown on collagen, Science 177: 799–802, 1972.PubMedCrossRefGoogle Scholar
  164. 164.
    Bornstein, M. B., Reconstituted rat-tail collagen used as substrate for tissue cultures on coverslips in Maximow slides and roller tubes, Lab. Invest. 7: 134–137, 1958.PubMedGoogle Scholar
  165. 165.
    Burdman, J. A., and Goldstein, M. N., Long-term tissue culture of neuroblastoma. III. In vitro studies of a nerve-growth stimulating factor in sera of children with neuroblastoma, J. Natl. Canc. Inst. 33: 123–133, 1964.Google Scholar
  166. 166.
    Chen, J. S., Del Fa, A., DiLuzio, A., and Calissano, P., Liposome-induced morphological differentiation of murine neuroblastoma Nature (London) 263: 604–606, 1976.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Kedar N. Prasad
    • 1
  1. 1.University of Colorado Medical CenterDenverUSA

Personalised recommendations