Cave Ecology and the Evolution of Troglobites

  • Thomas C. BarrJr.


Obligatory cavernicoles, or troglobites, have traditionally been of special interest to evolutionary biologists for several reasons. The existence of animal life in caves and other subterranean spaces at first attracted attention because of its novelty; intensive biological exploration of caves began little more than a century ago. Although the discovery and description of the cave faunas of the world is far from complete, especially in the Western Hemisphere, so much descriptive information has been compiled that we can safely assert that, at least in unglaciated, temperate parts of the world, the occurrence of numerous species of troglobites in any major limestone region is a common and highly probable phenomenon.


Cave Population Cave Environment Cave Stream Epigean Species Cave Passage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aeppli, E. 1952. Naturliche Polyploidie bei den Planarien Dendrocoelum lacteum(Müller) und Dendrocoelum infernale(Steinmann). Z. indukt. Abst. Vererbungsl., 84: 182–212.Google Scholar
  2. Alvarez, J. 1946. Revision del género Anoptichthyscon descripción de una especie nueva (Pisc., Characidae). An. Esc. Nac. Ciencias Biol., 4: 263–282.Google Scholar
  3. Alvarez, J. 1947. Descripción de Anoptichthys hubbsi, caracinido ciego de la Cueva de los Sabinos, S. L. P. Rev. Soc. Méxicana Hist. Nat., 8: 215–219.Google Scholar
  4. Atz, E. H. 1953. Experimental differentiation of basophil cell types in the transitional lobe of the pituitary of a teleost fish, Astyanax mexicanus. Bull. Bingham Oceanogr. Coll., 1953: 94–116.Google Scholar
  5. Baldwin, E., and R. A. Beatty. 1941. The pigmentation of cavernicolous animals. J. Exp. Biol., 18: 136–152.Google Scholar
  6. Banta, A. M. 1907. The Fauna of Mayfield’s Cave. Carnegie Inst. Washington Publ. 67: 1–114.Google Scholar
  7. Banta, A. M. 1910. A comparison of the reactions of a species of surface isopod with those of a subterranean species. J. Exp. Zool., 8:243–310, 439–488.Google Scholar
  8. Barr, T. C., Jr. 1959. New cave beetles (Carabidae, Trechini) from Tennessee and Kentucky. J. Tennessee Acad. Sci., 34: 5–30.Google Scholar
  9. Barr, T. C., Jr. 1960a. Introduction. Symposium: Speciation and raciation in cavernicoles. Amer. Midl. Nat., 64: 1–9.Google Scholar
  10. Barr, T. C., Jr. 1960b. The cavernicolous beetles of the subgenus Rhadine, genus Agonum(Coleoptera: Carabidae). Symposium: Speciation, and raciation in cavernicoles. Amer. Midl. Nat., 64: 45–65.Google Scholar
  11. Barr, T. C., Jr. 1961. Caves of Tennessee. Tennessee Dept. Conserv. and Comm., Div. Geol., Bull. 64: 1–567.Google Scholar
  12. Barr, T. C., Jr. 1962a. The genus Trechus(Coleoptera: Carabidae) in the southern Appalachians. Coleopterists’ Bull., 16: 65–92.Google Scholar
  13. Barr, T. C., Jr. 1962b. The blind beetles of Mammoth Cave, Kentucky. Amer. Midl. Nat., 68: 278–284.Google Scholar
  14. Barr, T. C., Jr. 1962c. The robustusgroup of the genus Pseudanophthalmus(Coleoptera: Carabidae). Coleopterists’ Bull., 16: 109–118.Google Scholar
  15. Barr, T. C., Jr. 1964. Non-troglobitic Carabidae (Coleoptera) from caves in the United States. Coleopterists’ Bull., 18: 1–4.Google Scholar
  16. Barr, T. C., Jr. 1965. The Pseudanophthalmusof the Appalachian valley (Coleoptera: Carabidae). Amer. Midl. Nat., 73: 41–72.Google Scholar
  17. Barr, T. C., Jr. 1966. Evolution of cave biology in the United States, 1882–1965. Bull. Nat. Speleol. Soc., 28: 15–21.Google Scholar
  18. Barr, T. C., Jr.. 1967a. Cave Carabidae (Coleoptera) of Mammoth Cave. Psyche, 73:284–287; 74: 24–26.Google Scholar
  19. b. Observations on the ecology of caves. American Nat., 101. In press.Google Scholar
  20. Barr, T. C., Jr., and R. A. Kuehne. 1968. Ecological studies in the Mammoth Cave system of Kentucky. II. The ecosystem. Int. J. Speleol., 4. In press.Google Scholar
  21. Barr, T. C., Jr., and S. B. Peck. 1965. Occurrence of a troglobitic Pseudanophthalmusoutside a cave (Coleoptera: Carabidae). American Midl. Nat., 73: 73–74.Google Scholar
  22. Barr, T. C., Jr., and J. R. Reddell. 1967. The arthropod fauna of the Carlsbad Caverns region, New Mexico. Southwestern Naturalist. In press.Google Scholar
  23. Beatty, R. A. 1941. The pigmentation of cavernicolous animals. II. Carotenoid pigments in the cave environment. J. Exp. Biol., 18: 144–152.Google Scholar
  24. Beatty, R. A. 1949. The pigmentation of cavernicolous animals. III. The carotenoid pigments of some amphipod Crustacea. J. Exp. Biol., 26: 125–130.PubMedGoogle Scholar
  25. Bedel, L., and E. Simon. 1875. Liste générale des articulés cavernicoles de l’Europe. J. Zool., 4: 1–69.Google Scholar
  26. Bishop, S. C. 1944. A new neotenic plethodontid salamander, with notes on related species. Copeia, 1944: 1–4.Google Scholar
  27. Blume, J., E. Bünning, and E. Günzler. 1962. Zur Aktivitätsperiodik bei Höhlentieren. Die Naturwissenschaften, 49: 525.Google Scholar
  28. Bolívar, C., and R. Jeannel. 1931. Campagne spéologique dans l’Amérique du Nord en 1928 (première série). Arch. zool. exp. etgén., 71: 293–316.Google Scholar
  29. Bonet, F. 1953. Datos sobre las cavernas y otros fenómenos erosivos de las calizas de la Sierra de El Abra. Congr. Cien. Méxicana Mem. (V) 3, Cien. Fís. y Mat., Geología: 238–266.Google Scholar
  30. Bowman, T. E. 1964. Antrolana lira, a new genus and species of troglobitic cirolanid isopod from Madison Cave, Virginia. Int. J. Speleol., 1:229–236.Google Scholar
  31. Brace, C. Loring. 1963. Structural reduction in evolution. American Nat., 97: 39–49.Google Scholar
  32. Breder, C. M., Jr. 1942. Descriptive ecology of La Cueva Chica, with especial reference to the blind fish, Anoptichthys. Zoologica, 27: 7–16.Google Scholar
  33. Breder, C. M., Jr. 1953. Cave fish evolution. Evolution, 7: 179–181.Google Scholar
  34. Bretz, J. H. 1942. Vadose and phreatic features of limestone caverns. J. Geol., 50: 675–811.Google Scholar
  35. Brown, F. A. 1961. Diurnal rhythm in cave crayfish. Nature (London), 191: 929–930.Google Scholar
  36. Brown, F. A. 1965. A unified theory for biological rhythms. InAschoff, J., ed., Circadian clocks, pp. 231–261. Amsterdam, North Holland Publ. Co.Google Scholar
  37. Bünning, E. 1964. The Physiological Clock: Endogenous Diurnal Rhythms and Biological Chronometry. Berlin, Springer-Verlag.Google Scholar
  38. Burbanck, W. D., J. P. Edwards, and M. P. Burbanck. 1948. Toleration of lowered oxygen tension by cave and stream crayfish. Ecology, 29: 360–367.Google Scholar
  39. Calman, W. T. 1904. On Munidopsis polymorphaKoelbel, a cave-dwelling marine crustacean from the Canary Islands. Ann. Mag. Nat Hist., ser. 7, 14.Google Scholar
  40. Calman, W. T. 1932. A cave-dwelling Crustacean of the family Mysidaceae from the island of Lanzarote. Ann. Mag. Nat. Hist., ser. 10, 10: 127–131.Google Scholar
  41. Carr, A. F. 1939. Haideotriton wallacei, a new subterranean salamander from Georgia. Occ. Pap. Boston Soc. Nat. Hist., 8:333–336.Google Scholar
  42. Caumartin, V. 1963. Review of the microbiology of underground environments. Bull. Nat. Speleol. Soc., 25: 1–14.Google Scholar
  43. Christiansen, K. A. 1961. Convergence and parallelism in cave Entomobryinae. Evolution, 15: 288–301.Google Scholar
  44. Christiansen, K. A. 1964. Bionomics of Collembola. Ann. Rev. Entom., 9: 147–178.Google Scholar
  45. Coiffait, H. 1958. Contribution à la connaissance des Coléoptères du sol. Vie et Milieu, suppl., 7: 1–210.Google Scholar
  46. Configliachi, P. and M. RuscONl. 1819. Del Proteo anguino di Laurenti. Pavia, 1819.Google Scholar
  47. Conn, H. W. 1966. Barometric wind in Wind and Jewel caves, South Dakota. Bull. Nat. Speleol. Soc., 28: 55–69.Google Scholar
  48. Cope, E. D. 1887. The Origin of the Fittest: Essays on Evolution. New York, D. Appleton and Co.Google Scholar
  49. Cournoyer, D. N. 1955. Appendix 6. InBrucker, and J. Lawrence, ed., The Caves Beyond. New York, Funk and Wagnalls.Google Scholar
  50. Cropley, J. B. 1965. Influence of surface conditions on temperatures in large cave systems. Bull. Nat. Speleol. Soc., 27: 1–10.Google Scholar
  51. Cuénot, L. 1925. L’Adaptation. Paris, G. Doin.Google Scholar
  52. Curl, R. L. 1958. A statistical theory of cave entrance evolution. Bull. Nat. Speleol. Soc., 20: 9–22.Google Scholar
  53. Cvijic, J. 1918. Hydrographie souterraine et l’évolution morphologique du karst. Rec. tray. inst. geogr. alpine (Grenoble), 6 (4): 1–56.Google Scholar
  54. Darwin, C. 1859. On the Origin of Species, 1st ed., Tacs., Cambridge, Mass., Harvard Univ. Press.Google Scholar
  55. Davenport, C. B. 1903. The animal ecology of the Cold Spring sand spit, with remarks on the theory of adaptation. Decennial Pub1. Univ. Chicago, 10: 1–22.Google Scholar
  56. Davies, W. E. 1949. Caverns of West Virginia. West Virginia Geol. Surv., 19: 1–353.Google Scholar
  57. Davies, W. E. 1951. Mechanics of cavern breakdown. Bull. Nat. Speleol. Soc., 13: 36–43.Google Scholar
  58. Davis, W. M. 1930. Origin of limestone caverns. Geol. Soc. Amer. Bull., 41: 475–628.Google Scholar
  59. Deamer, D. W. 1964. Entropy and cave animals. Ohio J. Sci., 64: 221–223.Google Scholar
  60. Deicay, J. E. 1842. (Descr. Amblyopsis spelaeus.) Zoology of New York, or the New York fauna. Part IV. Fishes. Albany. P. 187.Google Scholar
  61. Deleurance-Glaçon. S. 1963a. Recherches sur les coléoptères troglobies de la sous-famille des Bathysciinae. Ann. Sci. Nat. (Zool.), sér. 12, 5 (1): 1–172.Google Scholar
  62. Deleurance-Glaçon. S. 1963b. Contribution à -l’étude des coléoptères cavernicoles de la sousfamille des Trechinae. Ann. Spéléol., 18: 227–265.Google Scholar
  63. Dobzhansky, T. 1951. Genetics and the Origin of Species. 3rd ed., New York, Columbia Univ. Press.Google Scholar
  64. Dresco-Derouet, L. 1952. Influence des variations de salinité du milieu exterieur sur des crustacés cavernicoles et épigés. C. R. Acad. Sci. Paris, 234:473–475, 888–890.Google Scholar
  65. Dresco-Derouet, L. 1959. Contribution à l’étude de la biologie de deux crustacés aquatiques cavernicoles, Caecosphaeroma burgundumet Niphargus orcinus virei. Vie et Milieu, 10: 321–346.Google Scholar
  66. Dudich, E. 1932. Biologie der Aggteleker Tropfsteinhöhle “Baradla” in Ungarn. Speläol. Mon. (Wien), 13: 1–246.Google Scholar
  67. Durand, J. P. 1964. Anatomie de l’orbite chez la larve de Proteus anguinus. Bull. Soc. Zool. (France), 88: 278–298.Google Scholar
  68. Eberly, W. 1960. Competition and evolution in cave crayfishes of southern Indiana. Syst. Zool., 9: 29–32.Google Scholar
  69. Eigenmann, C. H. 1909. Cave vertebrates of America: a study in degenerative evolution. Carnegie Inst. Washington Publ., 104: 1–241.Google Scholar
  70. Emerson, A. E. 1949. Natural selection. In Allee, W. C., A. E. Emerson, O. Park, T. Park, and K. P. Schmidt. Principles of Animal Ecology. Philadelphia, W. B. Saunders.Google Scholar
  71. Gardner, J. H. 1935. Origin and development of limestone caverns. Geol. Soc. Amer. Bull., 46: 1255–1274.Google Scholar
  72. Ginet, R. 1960. Écologie, ethologie, et biologie de Niphargus. Ann. Spéléol., 15: 127–377.Google Scholar
  73. Gonnon, M. S., and D. E. Rosen. 1962. A cavernicolous form of the poeciliid fish Poecilia sphenopsfrom Tabasco, Mexico. Copeia, 1962, 360–368.Google Scholar
  74. Gounot, A. M. 1960. Recherches sur le limon argileux souterrain et sur son rôle nutritif pour les Niphargus(Amphipoda gammaridés). Ann. Spéléol., 15: 501–526.Google Scholar
  75. Gurnee, R. H., J. V. Thrailkill, and G. Nicholas. 1966. Discovery at the Rio Camuy. Explorers’ J., 44: 51–65.Google Scholar
  76. Hamann, O. 1896. Europäische Höhlenfauna: Eine Darstellung der in den Höhlen Europas Lebenden Tierwelt, mit Besonderer Berücksichtigung der Höhlenfauna Krains. Jena, Hermann Costenoble.Google Scholar
  77. Hansen, H. J. 1905. On the propagation, structure, and classification of the family Sphaeromidae. Quart. J. Micr. Sci., 49: 69–135.Google Scholar
  78. Hawes, R. S. 1939. The flood factor in the ecology of caves. J. Anim. Ecol., 8: 1–5.Google Scholar
  79. Heuts, M. J. 1951. Ecology, variation, and adaptation of the blind African cave fish Caecobarbus geertsiBoulenger. Ann. Soc. Roy. Zool. Belgique, 82: 155–230.Google Scholar
  80. Heuts, M. J. 1953a. Regressive evolution in cave animals. Sympos. Soc. Exp. Biol., 7 (Evolution): 290–309.Google Scholar
  81. Heuts, M. J. 1953b. Comment on “Cave fish evolution.” Evolution, 7: 391–392.Google Scholar
  82. Hobbs, H. H., Jr. 1942. The crayfishes of Florida. Univ. Florida Publ., Biol. Sci. Ser., 3 (2): 1–179.Google Scholar
  83. Hobbs, H. H., Jr., and T. C. Barr, Jr. The origins and affinities of the troglobitic crayfishes of North America. (Decapoda, Astacidae). II. The genus Orconectes In preparation.Google Scholar
  84. Holdhaus, K. 1933. Die europäische Höhlenfauna in ihren Beziehungen zur Eiszeit. Zoogeographica, 1: 1–53.Google Scholar
  85. Holsinger, J. R. 1966. A preliminary study on the effects of organic pollution of Banners Corner Cave, Virginia. Int. J. Speleol., 2: 75–89.Google Scholar
  86. Hubbs, C. L. 1938. Fishes from the caves of Yucatan. Carnegie Inst. Washington Publ. 491: 261–295.Google Scholar
  87. Hubbs, C. L., and W. T. Innes. 1936. The first known blind fish of the family Characidae: a new genus from Mexico. Occ. Pap. Mus. Zool. Univ. Michigan, 342: 1–7.Google Scholar
  88. Husson, R. 1959. Les crustacés pericaridés des eaux souterraines: considérations sur la biologie de ces cavernicoles. Bull. Soc. Zool. France, 84: 219–231.Google Scholar
  89. Husson, R., and J. Daum. 1953. Sur la biologie de Caecosphaeroma burgundum. C.R. Acad. Sci. Paris, 236: 2345–2347.PubMedGoogle Scholar
  90. Janzer, W., and W. L. 1952. Versuche zur evolutorischen Entstehung der Höhlentiermerkmale. Z. indukt. Abst. Vererbungsl., 84: 462–479.Google Scholar
  91. Jeannel, R. 1923. Sur l’évolution des coléoptères aveugles et le peuplement des grottes dans les monts Bihor en Transylvanie. C.R. Acad. Sci. Paris, 176: 1670–1673.Google Scholar
  92. Jeannel, R. 1926. Faune cavernicole de la France, avec une étude des conditions d’éxistence dans le domaine souterrain. Encycl. Entom., 7:1–334. Paris, P. Lechevalier.Google Scholar
  93. Jeannel, R. 1926–1930. Monographie des Trechinae. Morphologie comparüe et distribution güographique d’un groupe de Colüoptüres. L’Abeille, 32:221–550; 33:1–592; 34:59–122;35:1–808.Google Scholar
  94. Jeannel, R. 1943. Les fossiles vivants des cavernes. Paris, Editions Gallimard. 321 pp.Google Scholar
  95. Jeannel, R. 1950. La marche de l’évolution. Publ. Mus. Nat. Hist. Nat., Paris, no. 15.Google Scholar
  96. Jeannel, R.. 1965. La génèse du peuplement des milieux souterrains. Rév. d’écol. et biol. du sol, 2 (1): 1–22.Google Scholar
  97. Jegla, T. C., and J. S. Hall. 1962. A Pleistocene deposit of the free-tailed bat in Mammoth Cave, Kentucky. J. Mammal., 43: 447–481.Google Scholar
  98. Kammerer, P. 1912. Experimente über Fortpflanzung, Farbe, Augen und Körperreduktion bei Proteus anguinusLaur. Arch. Entwicklungsmech., 33: 349–461.Google Scholar
  99. Karaman, S. 1954. Über unsere unterirdische Fauna. Acta Mus. Maced. Sci. Nat., vol. 1 (Cited in Vandel, 1964: 19–20).Google Scholar
  100. Kofoid, C. A. 1899. The plankton of Echo River, Mammoth Cave. Trans. Amer. Micr. Soc., 21: 113–126.Google Scholar
  101. Kohls, G. M., and W. L. Jellison. 1948. Ectoparasites and other arthropods occurring in Texas bat caves. Bull. Nat. Speleol. Soc., 10: 116–117.Google Scholar
  102. Kosswig, C. 1937. Ober Pigmentverlust während des Höhlenlebens. Zool. Anz., 117: 37–43.Google Scholar
  103. Kosswig, C. 1965. Génétique et évolution régressive. Rév. Quest. Sci., 26: 227–257.Google Scholar
  104. Kosswig, C., and L. KosswiG. 1940. Die Variabilität bei Asellus aquaticusunter besonderer Berücksichtigung der Variabilität in isolierten unter-und oberirdischen Populationen. Rev. Fac. Sci. (Istanbul) ser. B, 5: 1–55.Google Scholar
  105. Krekeler, C. H. 1958. Speciation in cave beetles of the genus Pseudanophthabnus(Coleoptera: Carabidae). Amer. Midl. Nat., 59: 167–189.Google Scholar
  106. Lamarck, J. B. 1809. Philosophie Zoologique, vol. 1, facs., Weinheim, J. Cramer.Google Scholar
  107. Lankester, E. R. 1893. Blind animals in caves. Nature (London) 47: 389, 486.Google Scholar
  108. Lattin, G. De. 1939. Über die Evolution der Höhlentiercharaktere. Sitzber. Ges. Naturf. Freunde (Berlin), 32: 11–41.Google Scholar
  109. Leleup, N. 1956. La faune cavernicole du Congo Belge, et considérations sur les Coléoptères réliques d’Afrique intertropicale. Ann. Mus. Roy. Congo Belge (Tervuren, Belgique), sér.-in-oct., Sci. Zool., 46: 1–171.Google Scholar
  110. Ludwig, W. 1942. Zur evolutorischen Erklärung der Höhlentiermerkmale durch Allelelimination. Biol. Zentralbl., 62: 447–455.Google Scholar
  111. Macarthur, R. H. 1957. On the relative abundance of bird species. Proc. Nat. Acad. Sci. U.S.A., 43: 293–295.Google Scholar
  112. Maguire, B., Jr. 1961. Regressive evolution in cave animals and its mechanism. Texas J. Sci., 13: 363–370.Google Scholar
  113. Malott, C. A. 1932. Lost River at Wesley Chapel Gulf, Orange County, Indiana. Indiana Acad. Sci. Proc., 41: 285–316.Google Scholar
  114. Malott, C. A. 1937. Invasion theory of cavern development (abstr.). Proc. Geol. Soc. America, 1936: 323.Google Scholar
  115. Marshall, N. B., and G. L. Thinés. 1958. Studies of the brain, sense organs, and light sensitivity of a blind cave fish (Typhlogarra widdowsoni)from Iraq. Proc. Zool. Soc. (London) 131: 441–456.Google Scholar
  116. Mayr, E. 1942. Systematics and the Origin of Species, from the Viewpoint of a Zoologist. New York, Columbia Univ. Press.Google Scholar
  117. Mayr, E. 1963. Animal Species and Evolution. Cambridge, Harvard Univ. Press.Google Scholar
  118. Menaker, M. 1959. Endogenous rhythms of body temperature in hibernating bats. Nature (London), 184: 1251–1252.Google Scholar
  119. Mitchell, R. W. 1965. Ecological studies of the troglobitic carabid beetle Rhadine subterranea. Doct. dissert., Univ. Texas.Google Scholar
  120. Moore, G. W., ed. 1960. Origin of limestone caves: a symposium with discussion. Bull. Nat. Speleol. Soc., 22:3–84.Google Scholar
  121. Moore, G. W., ed. 1966. Limestone hydrology: a symposium with discussion. Bull. Nat. Speleol. Soc., 28:109–166.Google Scholar
  122. Mota, C., and J. Tanasachi. 1946. Acariens phreaticoles de Transylvanie. Notat. Biol. (Bucharest) 4. (Cited by Vandel, 1964:19).Google Scholar
  123. Motschulsky, T. V. Von. 1862. ütudes entomologiques (Ilme Annüe). Dresden.Google Scholar
  124. Noble, G. K., and C. H. Pope. 1928. The effect of light on the eyes, pigmentation, and behavior of the cave salamander, Typhlotriton. Anat. Rec., 41: 21.Google Scholar
  125. Norman, W. W. 1900. Remarks on the San Marcos salamander, Typhlomolge rathbuni. Amer. Nat., 34: 179 - 183.Google Scholar
  126. Packard, A. S., Jr. 1888. The cave fauna of North America, with remarks on the anatomy of the brain and origin of the blind species. Mem. Nat. Acad. Sci. (U.S.A.), 4: 1–156.Google Scholar
  127. Packard, A. S., Jr. 1894. On the origin of the subterranean fauna of North America. Amer. Nat., 28: 727–751.Google Scholar
  128. Park, O. 1951. Cavernicolous pselaphid beetles of Alabama and Tennessee, with observations on the taxonomy of the family. Geol. Surv. Alabama Mus. Pap. 31: 1–107.Google Scholar
  129. Park, O. 1956. New or little-known species of pselaphid beetles from southeastern United States. J. Tennessee Acad. Sci., 31: 54–100.Google Scholar
  130. Park, O. 1960. Cavernicolous pselaphid beetles of the United States. Amer. Midl. Nat., 64: 66–104.Google Scholar
  131. Park, O., and D. E. Reichle. 1964. Observations on the ecology and behavior of the cave cricket, Hadenoecus subterraneus(Scudder). Bull. Nat. Speleol. Soc., 26: 79 (abstr.).Google Scholar
  132. Park, O., T. W. Roberts, and S. J. Harris. 1941. Preliminary analysis of activity of the cave crayfish, Cambarus pellucidus. Amer. Nat., 75: 154–171.Google Scholar
  133. Poulson, T. L. 1963. Cave adaptation in amblyopsid fishes. Amer. Midl. Nat., 70: 257–290.Google Scholar
  134. Poulson, T. L. 1964. Animals in aquatic environments: animals in caves. InD. B. Dill, ed. Handbook of Physiology, sect. 4, “Adaptation to the environment,” ch. 47: 749–771. Washington, Amer. Physiol. Soc.Google Scholar
  135. Prout, T. 1964. Observations on structural reduction in evolution. Amer. Nat., 98: 239–249.Google Scholar
  136. Rasquin, P. and L. Rosenbloom. 1954. Endocrine imbalance and tissue hyperplasia in teleosts maintained in darkness. Bull. Amer. Mus. Nat. Hist., 104(4): 359–426, pl. 4–23.Google Scholar
  137. Reichle, D. E., J. D. Palmer, and O. Park. 1965. Persistent rhythmic locomdtor activity in the cave cricket, Hadenoecus subterraneus, and its ecological significance. Amer. Midl. Nat., 74: 57–66.Google Scholar
  138. Rensch, B. 1959. Evolution Above the Species Level. New York, Columbia Univ. Press.Google Scholar
  139. Rosen, D. E. 1962. Comments on the relationships of the North American cave fishes of the family Amblyopsidae. Amer. Mus. Novit., no. 2109.Google Scholar
  140. Roux, W. 1881. Der Kampf der Theile in Organismus. Leipzig.Google Scholar
  141. Sadoclu, P. 1957. Mendelian inheritance in the hybrids between the Mexican blind cave fishes and their overground ancestor. Verh. Deutsch. Zool. Ges. Graz, 1957: 432–439.Google Scholar
  142. Schiner, J. R. 1854. Fauna der Adelsberger-, Lueger-und Magdalen-Grotte. Verh. zool.-bot. Ges. Wien, 3: 1–40.Google Scholar
  143. Schiödte, J. C. 1851. Bidrag til den underjordiske Fauna. Vidensk. Selsk. Skr. (Copenhagen), 5 Raekke, naturv. og math. Afd., 2 Bd.: 1–39.Google Scholar
  144. Schlagel, S. R., and C. M. Breder, Jr. 1947. A study of the oxygen consumption of blind and eyed cave characins in light and darkness. Zoologica, 32: 17–27.Google Scholar
  145. Schmidt, F. J. 1832. Leptodirus Hohenwartii, n. g., n. sp. Illyrisches Blatt, Laibach, no. 3:9.Google Scholar
  146. Scorr, W. 1909. An ecological study of the plankton of Shawnee Cave, with notes on the cave environment. Biol. Bull., 17: 386–407.Google Scholar
  147. Simpson, G. G. 1944. Tempo and Mode in Evolution. New York, Columbia Univ. Press.Google Scholar
  148. Spencer, H. 1893. The inadequacy of natural selection. Contemporary Review, 63:153–167; 439–457; 743–761.Google Scholar
  149. Stager, K. E. 1941. A group of bat-eating duck hawks. The Condor, 43: 137–139.Google Scholar
  150. Stone, L. S. 1964a. The structure and visual function of the eye of larval and adult cave salamanders, Typhlotriton spelaeus. J. Exp. Zool., 156: 201–218.Google Scholar
  151. Stone, L. S. 1964b. Return of vision in transplanted larval eyes of cave salamanders. J. Exp. Zool., 156: 219–228.Google Scholar
  152. Stone, L. S. 1964c. Return of vision in larval eyes exchanged between Amblystoma punctatumand the cave salamander, Typhlotriton spelaeus. Invest. Ophthalmol., 3: 555 - 565.Google Scholar
  153. Sturm, J. H. 1844. Anophthalmus, blind Laufküfer, neue Gattung aus der familie der Caraben. Deutschl. Fauna in Abb. nach der Natur, Nürnberg, 5te Abt., 15:131, pl. 303.Google Scholar
  154. Swinnerton, A. C. 1932. Origin of limestone caverns. Geol. Soc. Amer. Bull., 43: 663–694.Google Scholar
  155. Swinnerton, A. C. 1942. Hydrology of limestone terranes. InO. E. Meinzer, ed. Physics of the Earth, pt. 9, Hydrology: 656–677. New York, McGaw Hill.Google Scholar
  156. Tellkampf, T. G. 1844a. Beschreibung einiger neuer in der Mammuth-Höhle in Kentucky aufgefundener Gattungen von Gliederthieren. Arch. Naturg., 10:318–322, pl. 7.Google Scholar
  157. Tellkampf, T. G. 1844b. Ueber den blinden Fisch der Mammuth-Höhle in Kentucky, mitBemerkungen über einige andere in dieser Höhle lebenden Thiere. Müllers Arch. Anat. Physiol., 4:384–394, pl. 9.Google Scholar
  158. Thornbury, W. D. 1954. Karst topography. InPrinciples of Geomorphology, pp. 316–353. New York, John Wiley and Sons.Google Scholar
  159. Valvasor, J. W., JR. 1689. Die Ehre dess Hertzogthums Crain. Vol. 4, pp. 594–598 treats the olm (Proteus). Laybach, 4 vols.Google Scholar
  160. Vandel, A. 1958. La répartition des cavernicoles et la paléogéographie. Actes 2. Congr. Int. Spéléol., 2 (3): 31–43.Google Scholar
  161. Vandel, A. 1961. Eye and pigment regression of cave salamanders. Bull. Nat. Speleol. Soc., 23: 71–74.Google Scholar
  162. Vandel, A. 1964. Biospéologie: La Biologie des Animaux Cavernicoles. Paris, Gauthier-Villars.Google Scholar
  163. Vandel, A., and Michel Bouillon. 1959. Le Protée et son intéret biologique. Ann. Spéléol., 14: 112–127.Google Scholar
  164. Viré, A. 1904. La Biospéléologie. C.R. Acad. Sci. Paris, 139: 992–995.Google Scholar
  165. Weismann, A. 1889. Essays Upon Heredity and Kindred Biological Problems. Oxford, Clarendon Press.Google Scholar
  166. Woons, Loren P., and Robert F. Inger. 1957. The cave, spring, and swamp fishes of the family Amblyopsidae of central eastern United States. Amer. Midl. Nat., 58 (1): 232–258.Google Scholar
  167. Woodward, H. P. 1961. A stream piracy theory of cave formation. Bull. Nat. Speleol. Soc., 23: 39–58.Google Scholar
  168. Wright, S. 1929. Fisher’s theory of dominance. Amer. Nat., 63: 274–279.Google Scholar
  169. Wright, S. 1964. Pleiotropy in the evolution of structural reduction and of dominance. Amer. Nat., 98: 65–69.Google Scholar

Copyright information

© Plenum Press, New York 1968

Authors and Affiliations

  • Thomas C. BarrJr.
    • 1
  1. 1.Department of Zoology and Institute of SpeleologyUniversity of KentuckyLexingtonUSA

Personalised recommendations