Ferricyanide Changes the Transport Properties of Lamprothamnium Papulosum Plasmalemma

  • G. Thiel
  • G. O. Kirst
Part of the NATO ASI Series book series (NSSA, volume 7)


External perfusion of the charophyte Lamprothamnium papulosum with medium containing 0.5 mM ferricyanide induced depolarization of the transmembrane potential. The depolarization was associated with a decrease in membrane resistance, presumably due to an increase in K+ conductance.

During the depolarization cytoplasmic streaming slowed down transiently. The decrease of streaming velocity could be overcome by lowering the external Ca2+ concentration or preconditioning the cells with the Ca2+ channel blocker La3+. Since cytoplasmic streaming is sensitive to the concentration of cytoplasmic free Ca2+ it seems as if Fe3+Cy stimulates Ca2+ influx. As a sequence of events we propose: The transmembrane reduction is a depolarizing current. The depolarization triggers the opening of voltage gated Ca2+ and/or K+ channels.

However, the Fe3+Cy stimulated net proton efflux was not a result of the membrane depolarization.


Experimental Medium Diffusion State Membrane Resistance Arrow Head Cytoplasmic Streaming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Beilby, M.J., 1985. J.Exp.Bot. 36, 228–239.CrossRefGoogle Scholar
  2. Beilby, M.J., 1986. J.Membr.Biol. 89, 241–249.CrossRefGoogle Scholar
  3. Bisson, M.A., N.A. Walker, 1982. J.Exp.Bot. 33, 520–532.CrossRefGoogle Scholar
  4. Keifer, D.W., R.M. Spanswick, 1978. Plant Physiol. 62, 653, 659.Google Scholar
  5. Kirst, G.O., F. Wichmann, 1987. J. Plant Physiol. 131, 413–422.CrossRefGoogle Scholar
  6. Kishimoto, U., N. Kamiike, Y. Takeuchi, T. Ohkawa, 1984. Membr. Biol. 80, 175–183.CrossRefGoogle Scholar
  7. Kishimoto, U., Y. Takeuchi, T. Ohkawa, N. Kami-ike, 1985. J.Membr.Bio1. 86, 27–36CrossRefGoogle Scholar
  8. Lühring, H. 1986. Protoplasma 133, 19–28.CrossRefGoogle Scholar
  9. Lass, B., G. Thiel, C.I. Ullrich-Eberius, 1986. Planta 169, 251–259.CrossRefGoogle Scholar
  10. Moriyasu, Y., T. Shimmen, M. Tazawa, 1984. Cell Structure and Function 9, 235–246.CrossRefGoogle Scholar
  11. Marigo, G., Belkoura, M., 1985. Plant Cell Rep. 4, 311–314.CrossRefGoogle Scholar
  12. Neufeld, E., A.W. Bown, 1987. Plant Phyisol. 83, 895–899.CrossRefGoogle Scholar
  13. Okazaki, Y., T. Shimmen, M. Tazawa, 1984. Plant and Cell Physiol. 25, 573–581.Google Scholar
  14. Okazaki, Y., M. Tazuawa, 1986. Plant Cell Environ. 9, 491–494.CrossRefGoogle Scholar
  15. Ohkawa, T., T. Tsutsui, U. Kishimoto, 1986. Plant Cell Physiol. 27, 1429–1438Google Scholar
  16. Reid, R.J., N.A. Walker, 1983. Aust. J.Plant Physiol. 10, 373–383.Google Scholar
  17. Rubinstein, B., A.I. Stern, 1986. Plant Physiol. 80, 805–811.PubMedCrossRefGoogle Scholar
  18. Shiina, T., M. Tazawa, 1987. J.Membr.Biol. 99, 137–146.CrossRefGoogle Scholar
  19. Shimmen, T., Kikujama, M. Tazawa, 1976. J.Membr.Biol. 30, 249–270.CrossRefGoogle Scholar
  20. Shimmen,T., M. Tazawa, 1983. Plant Cell Physiol. 24, 1511–1524.Google Scholar
  21. Sijmons, P.C., F.C. Lanfermeijer, A.H. de Voer, H.B.A. Prins, H.F. Bienfait, 1984. Plant Physiol. 76, 943–946.PubMedCrossRefGoogle Scholar
  22. Thiel, G., G.O. Kirst, 1988. J.Exp.Bot. 39, in press.Google Scholar
  23. Tyerman, S.D., G.P. Findley, G.J. Patterson, 1986. J.Membr. Biol. 89, 139–152CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • G. Thiel
    • 1
  • G. O. Kirst
    • 1
  1. 1.Fachbereich BiologieUniversität Bremen NW IIBremenGermany

Personalised recommendations