Advertisement

Heritable Radiosensitive and DNA Repair-Deficient Disorders in Man

  • M. C. Paterson
  • N. T. Bech-Hansen
  • P. J. Smith
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 40)

Abstract

The deleterious effects of many environmental agents--ultraviolet (UV) light, ionizing radiation, and polycyclic aromatic hydrocarbons, to cite a few--are primarily attributed to their ability to react with, and thereby structurally modify the deoxyribonucleic acid (DNA) of the living cell1. Given the appreciable level of damage believed to occur naturally in DNA2 and the need to maintain its fidelity as the repository of the genetic script, it s understandable that all living organisms, humans included, should possess multiple cellular processes whose combined actions promote the repair of damage to DNA3. An increasing number of genetically transmitted disorders in man is being found to be associated with enhanced sensitivity to extrinsic DNA-damaging agents. Patients afflicted with any one of these particular Mendelian single-gene traits are typically cancer-prone and suffer from progressive neurodegeneration, and, at least for a few disorders, their cells when cultured in vitro exhibit anomalies in one or more DNA epair processes4–8. The majority of these hereditary diseases can be divided into two broad groups: (i) disorders associated with hypersensitivity to UV light and UV-mimetic chemicals; and (ii) disorders associated with hypersensitivity to ionizing radiation and radiomimetic chemicals. Exemplary diseases of the former group--namely, xeroderma pigmentosum (XP), Bloom syndrome (BS), and Cockayne syndrome--are reviewed elsewhere in this volume. Here we present an overview of the clinical and laboratory features of the latter group of disorders with emphasis on the prototype disease, ataxia telangiectasia (AT)7,8, and comment briefly on current insight into the pathogenesis of these disorders and its implications for theories on environmental carcinogenesis and neurodegenerative processes in man.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Roberts, The repair of DNA modified by cytotoxic, muta-genic, and carcinogenic chemicals, Adv. Radiat. Biol. 7: 211 (1978).CrossRefGoogle Scholar
  2. 2.
    T. Lindahl, DNA repair enzymes acting on spontaneous lesions in DNA, in:“Cellular Senescence and Somatic Cell Genetics: DNA Repair Processes,” W. W. Nichols and D. G. Murphy, eds., p. 225, Symposia Specialists, Miami (1977).Google Scholar
  3. 3.
    P. C. Hanawalt, E. C. Friedberg, and C. F. Fox, “DNA Repair Mechanisms,” Academic Press, New York (1978).Google Scholar
  4. 4.
    C. F. Arlett and A. R. Lehmann, Human disorders showing increased sensitivity to the induction of genetic damage, Ann. Rev. Genet. 12: 95 (1978).CrossRefPubMedGoogle Scholar
  5. 5.
    M. C. Paterson, Environmental carcinogenesis and imperfect repair of damaged DNA in Homo sapiens: Causal relation revealed by rare hereditary disorders, in:“Carcinogens: Identification and Mechanisms of Action,” A. C. Griffin and C. R. Shaw, eds., p. 251, Raven Press, New York (1979).Google Scholar
  6. 6.
    E. C. Friedberg, U. K. Ehmann, and J. I. Williams, Human diseases associated with DNA repair, Adv. Radiat. Biol. 8: 85 (1979).CrossRefGoogle Scholar
  7. 7.
    K. H. Kraemer, Progressive degenerative diseases associated with defective DNA repair: Xeroderma pigmentosum and ataxia telangiectasia, See ref. 2, p. 37.Google Scholar
  8. 8.
    M. C. Paterson and P. J. Smith, Ataxia telangiectasia: An inherited human disorder involving hypersensitivity to ionizing radiation and related DNA-damaging chemicals, Ann. Rev. Genet. 13: 291 (1979).CrossRefPubMedGoogle Scholar
  9. 9.
    T. A. Waldmann and K.R. McIntire, Serum-alpha-fetoprotein levels in patients with ataxia-telangiectasia, Lancet 2: 1112 (1972).CrossRefPubMedGoogle Scholar
  10. 10.
    A. M. R. Taylor, D. G. Harnden, C. F. Arlett, S. A. Harcourt, A. R. Lehman, S. Stevens, and B. A. Bridges, Ataxia telangiectasia: A human mutation with abnormal radiation sensitivity, Nature 258: 427 (1975).CrossRefPubMedGoogle Scholar
  11. 11.
    R. Cox, G. P. Hosking, and J. Wilson, Ataxia telangiectasia: Evaluation of radiosensitivity in cultured skin fibroblasts as a diagnostic test, Arch. Dis. Child. 53: 386 (1978).CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    M. C. Paterson, A. K. Anderson, B. P. Smith, and P. J. Smith, Enhanced radiosensitivity of cultured fibroblasts from ataxia telangiectasia heterozygotes manifested by defective colony-forming ability and reduced DNA repair replication after hypoxic y-irradiation, Cancer Res. 39: 3725 (1979).PubMedGoogle Scholar
  13. 13.
    C. F. Arlett and S. A. Harcourt, Survey of radiosensitivity in a variety of human cell strains, Cancer Res. 40: 926 (1980).PubMedGoogle Scholar
  14. 14.
    R. R. Weichselbaum, J. Nove, and J. B. Little, X-ray sensitivity of fifty-three human diploid fibroblast cell strains from patients with characterized genetic disorders, Cancer Res. 40: 920 (1980).PubMedGoogle Scholar
  15. 15.
    M. C. Paterson, P. J. Smith, N. T. Bech-Hansen, B. P. Smith, B. M. Sell, and M. V. Middlestadt, unpublished data.Google Scholar
  16. 16.
    M. C. Paterson, Environmental and genetic interactions in human cancer, in:“Proceedings of the First International Conference on Health Effects of Energy Production,” N. E. Gentner and P. Unrau, eds., p. 69, Atomic Energy of Canada Limited, Report AECL-6958, Chalk River (1980).Google Scholar
  17. 17.
    C. R. Arlett, Lethal response to DNA damaging agents in a variety of human fibroblast cell strains, Mutat. Res. 46: 106 (1977).CrossRefGoogle Scholar
  18. 18.
    P. J. Smith and M. C. Paterson, Sensitivity to near UV light in cultured fibroblasts from various human syndromes, Proc. Ann. Meet. Am. Assoc. Cancer Res., New Orleans 20: 88 (1979).Google Scholar
  19. 19.
    D. A. Scudiero, Decreased DNA repair synthesis and defective colony-forming ability of ataxia telangiectasia fibroblast cell strains treated with Nmethyl-N’-nitro-N-nitrosoguanídine, Cancer Res. 40: 984 (1980).PubMedGoogle Scholar
  20. 20.
    D. I. Hoar and P. Sargent, Chemical mutagen hypersensitivity in ataxia telangiectasia, Nature 261: 590 (1976).CrossRefPubMedGoogle Scholar
  21. 21.
    A. R. Lehmann and S. Stevens, The response of ataxia telangiectasia cells to bleomycin, Nucleic Acids Res. 6:1953 (1979 ).CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    A. M. R. Taylor, C. M. Rosney, and J. B. Campbell, Unusual sensitivity of ataxia telangiectasia cells to bleomycin, Cancer Res. 39: 1046 (1979).PubMedGoogle Scholar
  23. 23.
    P. C. Chen, M. F. Lavin, C. Kidson, and D. Moss, Identification of ataxia telangiectasia heterozygotes, a cancer prone population, Nature 274: 484 (1978).CrossRefPubMedGoogle Scholar
  24. 24.
    R. R. Weichselbaum, J. Nove, and J. B. Little, Deficient recovery from potentially lethal radiation damage in ataxia telangiectasia and xeroderma pigmentosum, Nature 271: 261 (1978).CrossRefPubMedGoogle Scholar
  25. 25.
    M. F. Rajewsky, R. Goth, 0. D. Laerum, H. Biessmann, and D. F. Hulser, Molecular and cellular mechanisms in nervous system-specific carcinogenesis by N-ethyl-N-nitrosourea, in:“Fundamentals in Cancer Prevention,” P. N. Magee, S. Takayama, T. Sugimura, and T. Matsushima, eds., p. 313, University of Tokyo Press, Tokyo, and University Park Press, Baltimore (1976).Google Scholar
  26. 26.
    R. S. Day, III, Viral probes for mammalian cell DNA repair: Results and prospects, see ref. 3, p. 531.CrossRefGoogle Scholar
  27. 27.
    C. F. Arlett, Survival and mutation in gamma-irradiated human cell strains from normal or cancer-prone individuals, in: “Radiation Research: Proceedings of the Sixth International Congress of Radiation Research,” S. Okada, M. Imamura, T. Terashima, and H. Yamaguichi, eds., p. 596, Toppan Printing Co., Tokyo (1979).Google Scholar
  28. 28.
    R. R. Weichselbaum and J. B. Little, Familial retinoblastoma and ataxia telangiectasia: Human models for the study of DNA damage and repair, Cancer 45: 775 (1980).CrossRefPubMedGoogle Scholar
  29. 29.
    J. German, Genes which increase chromosomal instability in somatic cells and predispose to cancer, Pros. Med. Genet. 8: 61 (1972).Google Scholar
  30. 30.
    F. Hecht and B. K. McCaw, Chromosome instability syndromes, in:“Genetics of Human Cancer,” J. J. Mulvihill, R. W. Miller, and J. F. Fraumeni, Jr., eds., p. 105, Raven Press, New York (1977).Google Scholar
  31. 31.
    D. G. Harnden, Ataxia telangiectasia syndrome: Cytogenetic and cancer aspects, in:“Chromosomes and Cancer,” J. German, ed., p. 619, Wiley Press, New York (1974).Google Scholar
  32. 32.
    A. M. R. Taylor, J. A. Metcalfe, J. M. Oxford, and D. G. Harnden, Is chromatid’-type damage in ataxia telangiectasia after irradiation at Gp a consequence of defective DNA repair? Nature 260: 441 (1976).CrossRefPubMedGoogle Scholar
  33. 33.
    B. K. McCaw, F. Hecht, D. G. Harnden, and R. L. Teplitz, Somatic rearrangement of chromosome 14 in human lymphocytes, Proc. Natl. Acad. Sci. USA 72: 2071 (1975).CrossRefPubMedGoogle Scholar
  34. 34.
    N. H. Hatcher, P. S. Brinson, and E. B. Hook, Sister chromatid exchanges in ataxia telangiectasia, Mutat. Res. 35: 333 (1976).Google Scholar
  35. 35.
    S. M. Galloway, Ataxia telangiectasia: The effects of chemical mutagens and X-rays on sister chromatid exchanges in blood lymphocytes, Mutat. Res. 45: 343 (1977).Google Scholar
  36. 36.
    T. Webb, D. G. Harnden, and M. Harding, The chromosome analysis and susceptibility to transformation by Simian virus 40 of fibroblasts from ataxia-telangiectasia, Cancer Res. 37: 997 (1977).PubMedGoogle Scholar
  37. 37.
    M. C. Paterson, B. P. Smith, P. H. M. Lohman, A. K. Anderson, and L. Fishman, Defective excision repair of y-ray-damaged DNA in human (ataxia telangiectasia) fibroblasts, Nature 260: 444 (1976).CrossRefPubMedGoogle Scholar
  38. 38.
    M. C. Paterson, B. P. Smith, P. A. Knight, and A. K. Anderson, Ataxia telangiectasia: An inherited human disease involving radiosensitivity, malignancy and defective DNA repair, in: “Research in Photobiology,” A. Castellani, ed., p. 207, Plenum Press, New York (1977).Google Scholar
  39. 39.
    M. C. Paterson, P. J. Smith, N. T. Bech-Hansen, B. P. Smith, and B. M. Sell, y-ray hypersensitivity and faulty DNA repair in cultured cells from humans exhibiting familial cancer proneness, see ref. 27, p. 484.Google Scholar
  40. 40.
    P. Cerutti, K. Shinohara, and J. Remsen, Repair of DNA damage induced by ionizing radiation and benzo(a)pyrene in mammalian cells, J. Toxicol. Envirn. Health 2: 1375 (1977).CrossRefGoogle Scholar
  41. 41.
    J. F. Remsen and P. A. Cerutti, Excision of gamma-ray induced thymine lesions by preparations from ataxia telangiectasia fibroblasts, Mutat. Res. 43: 139 (1977).Google Scholar
  42. 42.
    P. V. Hariharan, S. Eleczko, B. P. Smith, and M. C. Paterson, unpublished data.Google Scholar
  43. 43.
    R. B. Sheridan, III, and P. C. Huang, Ataxia telangiectasia: Further considerations of the evidence for single strand break repair, Mutat. Res. 61: 415 (1979).Google Scholar
  44. 44.
    A. R. Lehmann and S. Stevens, The production and repair of double strand breaks in cells from normal humans and from patients with ataxia telangiectasia, Biochim. Biophys. Acta 474: 49 (1977).Google Scholar
  45. 45.
    F. E. Ahmed and R. B. Setlow, Excision repair in mammalian cells, see ref. 3, p. 333.Google Scholar
  46. 46.
    A. R. Lehmann, S. Kirk-Bell, C. F. Arlett, S. A. Harcourt, E. A. de Weerd-Kastelein, W. Keijzer, and P. Hall-Smith, Repair of ultraviolet light damage in a variety of human fibroblast cell strains, Cancer Res. 37: 904 (1977).Google Scholar
  47. 47.
    D. E. Amacher and M. W. Lieberman, Removal of acetylamino.fluorene from the DNA of control and repair-deficient human fibroblasts, Biochem. Biophys. Res. Commun. 74: 285 (1977).CrossRefGoogle Scholar
  48. 48.
    M. Ikenaga, H. Takebe, and Y. Ishii, Excision repair of DNA base damage in human cells treated with the chemical carcinogen 4-nitroquinoline 1-oxide, Mutat. Res. 43: 415 (1977).CrossRefPubMedGoogle Scholar
  49. 49.
    T. Inoue, K. Hirano, A. Yokoiyama, T. Kada, and H. Kato, DNA repair enzymes in ataxia telangiectasia and Bloom’s syndrome fibroblasts, Biochim. Biophys. Acta 479: 497 (1977).CrossRefPubMedGoogle Scholar
  50. 50.
    U. Kuhnlein, B. Lee, and S. Linn, Human uracil DNA N-glycosi- dase: Studies in normal and repair defective cultured fibroblasts, Nucleic Acids Res. 5: 117 (1978).CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    R. B. Sheridan, III, and P. C. Huang, Apurinic and/or apyrimidinic endonuclease activity in ataxia telangiectasia cell extracts, Mutat. Res. 52: 129 (1978).Google Scholar
  52. 52.
    R. E. Moses and A. L. Beaudet, Apurinic DNA endonuclease activities in repair-deficient human cell lines, Nucleic Acids Res. 5: 463 (1978).CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    A. R. Lehmann, Ataxia telangiectasia and the lethal lesion produced by ionizing radiation, see ref. 2, p. 167.Google Scholar
  54. 54.
    A. M. R. Taylor, Unrepaired DNA strand breaks in irradiated ataxia telangiectasia lymphocytes suggested from cytogenetic observations, Mutat. Res. 40: 407 (1978).CrossRefGoogle Scholar
  55. 55.
    W. B. Reed, W. L. Epstein, E. Boder, and R. Sedgwick, Cutaneous manifestations of ataxia-telangiectasia, J. Amer. Med. Assoc. 195: 746 (1966).CrossRefGoogle Scholar
  56. 56.
    M. Swift, L. Sholman, M. Perry, and C. Chase, Malignant neoplasms in the families of patients with ataxia-telangiectasia, Cancer Res. 36: 209 (1976).PubMedGoogle Scholar
  57. 57.
    D. Bergsma, “Birth Defects Compendium (Second Ed.),” Alan R. Liss (for The National Foundation-March of Dimes ), New York (1979).Google Scholar
  58. 58.
    V. A. McKusick, “Mendelian Inheritance in Man: Catalogs of Autosomal Dominant, Autosomal Recessive, and X-linked Phenotypes ( Fifth Ed.),” The Johns Hopkins University Press, Baltimore (1978).Google Scholar
  59. 59.
    J. F. Remsen and P. A. Cerutti, Deficiency of gamma-ray excision repair in skin fibroblasts from patients with Fanconi’s anemia, Proc. Natl. Acad. Sci. USA 73: 2419 (1976).CrossRefPubMedGoogle Scholar
  60. 60.
    C. F. Arlett, Presymptomatic diagnosis of Huntington’s disease? Lancet 1: 540 (1980).CrossRefPubMedGoogle Scholar
  61. 61.
    A. N. Moshell, R. E. Tarone, S. F. Barrett, and J. H. Robbins, Radiosensitivity in Huntington’s disease: Implications for pathogenesis and presymptomatic diagnosis, Lancet 1: 9 (1980).CrossRefPubMedGoogle Scholar
  62. 62.
    P. D. Lewis, J. B. Corr, C. F. Arlett, and S. A. Harcourt, Increased sensitivity to gamma irradiation of skin fibroblasts in Friedreich’s ataxia, Lancet 2: 474 (1979).CrossRefPubMedGoogle Scholar
  63. 63.
    J. H. Robbins, A. N. Moshell, R. G. Scarpinato, and R. E. Tarone, Cells from patients with olivopontocerebellar atrophy and familial dysautonomia are hypersensitive to ionizing radiation, Clin. Res. 28: 290A (1980).Google Scholar
  64. 64.
    J. H. Robbins, Workshop summary: Xeroderma pigmentosum, see ref. 3, p. 603.Google Scholar
  65. 65.
    R. H. Sagerman, J. R. Cassady, P. Tretter, and R. M. Ellsworth, Radiation induced neoplasia following external beam therapy for children with retinoblastoma, Am. J. Roentgenol. 105: 529 (1969).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • M. C. Paterson
    • 1
  • N. T. Bech-Hansen
    • 1
  • P. J. Smith
    • 1
  1. 1.Health Sciences DivisionAtomic Energy of Canada Limited Chalk River Nuclear LaboratoriesChalk RiverCanada

Personalised recommendations