Damage to DNA Caused by Hydrolysis

  • Robert Shapiro
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 40)


The covalent structure of DNA is unstable in aqueous solution. It tends to hydrolyze to its monomeric components, and they themselves are subject to various hydrolytic reactions. These processes are slow, when compared to most familiar chemical reactions. However, a reaction that is slow by these standards may still have great biological significance, if it occurs within the genetic material of an organism. A single base transformation within a DNA molecule may be sufficient to cause a mutation, or inactivate the DNA. Consider a reaction, for example, with a rate constant of 10−10 sec−1 at pH 7.4, 37°; it will have a half life of 220 years. Assume that, within a DNA, it affects two of the four bases. It will take place once every three hours per million base pairs of DNA, and thus be a significant source of damage.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shapiro, R. and Klein, R.S. (1966) Biochemistry 5: 2358–2362CrossRefPubMedGoogle Scholar
  2. 2.
    Garrett, E.R. and Tsau, J. (1972) J. Pharm Sci. 61: 1052–1061CrossRefPubMedGoogle Scholar
  3. 3.
    Budowsky, E.I., Sverdlov, D.D., Shibaeva, R.P., Monastyrkaya, G.S. and Kochetkov, N.K. (1971) Biochim. Biophys. Acta 246: 300–319CrossRefPubMedGoogle Scholar
  4. 4.
    Notari, R.E., Chin, M.L. and Wittebort, R. (1972) J. Pharm Sci. 61: 1189–1196CrossRefPubMedGoogle Scholar
  5. 5.
    Dudcz, E., Darzynkiewicz, E. and Shugar, D. (1977) Acta Biochim. Polon. 24: 207–214Google Scholar
  6. 6.
    Fisher, G.J. and Johns, H.E. (1976) In: S.Y. Wang (ed)“Photochemistry and Photobiology of Nucleic Acids’; Vol. I, Academic Press, New York, pp 169–224CrossRefGoogle Scholar
  7. 7.
    Shapiro, R., DiFate, V. and Welcher, M. (1974) J. Amer. Chem. Soc. 96: 906–912CrossRefGoogle Scholar
  8. 8.
    Slae, S. and Shapiro, R. (1978) J. Org. Chem. 43: 1721–1726CrossRefGoogle Scholar
  9. 9.
    Hayatsu, H. (1976) Progr. Nucleic Acid Res. Mol. Biol. 16: 75124Google Scholar
  10. 10.
    Shapiro, R. (1977) Mutation Res. 39: 149–176CrossRefPubMedGoogle Scholar
  11. 11.
    Lindahl, T. and Nyberg, B. (1972) Biochemistry 11: 3610–3618CrossRefPubMedGoogle Scholar
  12. 12.
    Coulondre, C., Miller, J.H., Farabaugh, P.J. and Gilbert, W. (1978) Nature 274: 775–780CrossRefGoogle Scholar
  13. 13.
    Jordan, D.O. (1960)“The Chemistry of Nucleic Acids,” Butter-worth’s, Washington, D.C., p 65Google Scholar
  14. 14.
    Jones, A.S., Mian, M. and Walker, R.T. (1966) J. Chem. Soc. (C):692–695Google Scholar
  15. 15.
    Kammen, H.O. and Spengler, S.J. (1970) Biochim. Biophys. Acta 213: 352–364CrossRefPubMedGoogle Scholar
  16. 16.
    Ganguli, P.K., Reiner, A. and Gyenes, L. (1971) Biochim. Biophys. Acta 254: 167–171CrossRefPubMedGoogle Scholar
  17. 17.
    Ullman, J.S. and McCarthy, B.J. (1973) Biochim. Biophys. Acta 294: 396–404CrossRefPubMedGoogle Scholar
  18. 18.
    Lindahl, T. and Nyberg, B. (1979) Progr. Nucleic Acid Res. Mol. Biol. 22: 135–192CrossRefGoogle Scholar
  19. 19.
    Capon, B. (1969) Chem. Rev. 69: 407–498CrossRefGoogle Scholar
  20. 20.
    Shapiro, R. and Kang, S. (1969) Biochemistry 11: 1806–1810CrossRefGoogle Scholar
  21. 21.
    Shapiro, R. and Danzig, M. (1972) Biochemistry 11: 23–29CrossRefPubMedGoogle Scholar
  22. 22.
    Zoltewicz, J.A., Clark, D.F., Sharpless, T.W. and Grahe, G. (1970) J. Amer. Chem. Soc. 92: 1741–1750CrossRefGoogle Scholar
  23. 23.
    Garrett, E.R. and Mehta, P.J. (1972) J. Amer. Chem. Soc. 94: 8532–8541CrossRefGoogle Scholar
  24. 24.
    Zoltewicz, J.A. and Clark, D.F. (1972) J. Amer. Chem. 37: 1193 1197Google Scholar
  25. 25.
    Hevesi, L., Wolfson-Davidson, E., Nagy, J.B., Nagy, 0.B. and Bruylants, A. (1972) J. Amer. Chem. Soc. 94: 4715–4719CrossRefGoogle Scholar
  26. 26.
    Romero, R.,,Stein, R., Bull, H.G. and Cordes, E.H. (1978) J. Amer.. Chem. Soc. 100: 7620–7624Google Scholar
  27. 27.
    Cadet, J. and Teoule, R. (1974) J. Amer. Chem. Soc. 96: 6517–6519CrossRefGoogle Scholar
  28. 28.
    Garrett, E.R. and Mehta, P.J. (1972) J. Amer. Chem. Soc. 94: 8542–8547CrossRefGoogle Scholar
  29. 29.
    Greer, S. and Zamenhof, S. (1962) J. Mol. Biol. 4: 123–141CrossRefPubMedGoogle Scholar
  30. 30.
    Lindahl, T. and Nyberg, B. (1972) Biochemistry 11: 3610–3618CrossRefPubMedGoogle Scholar
  31. 31.
    Jones, A.S., Mian, A.M. and Walker, R.T. (1966) J. Chem. Soc. (C):1784–1786Google Scholar
  32. 32.
    Lindahl, T. and Anderson, A. (1972) Biochemistry 11: 3618–3623CrossRefPubMedGoogle Scholar
  33. 33.
    Brown, D.M. (1974) In: P.O.P. Ts’o (ed) “Basic Principles in Nucleic Acid Chemistry,” Vol. II, Academic Press, New York, pp 1–90Google Scholar
  34. 34.
    Crine, P. and Verly, W.G. (1976) Biochim. Biophys. Acta 442: 50–57CrossRefPubMedGoogle Scholar
  35. 35.
    Lindahl, T. and Ljungquist, S. (1977) In: P.0 Hanamawalt and R.B. Setlow (eds) “Molecular Mechanisms for Repair of DNA,” Part A, Plenum Press, New York, pp 31–38CrossRefGoogle Scholar
  36. 36.
    Eigner, J. Boedtker, H. and Michaels, G. (1961) Biochim. Biophys. Acta 51: 165–168CrossRefPubMedGoogle Scholar
  37. 37.
    Lehninger, A.L. (1975)“Biochemistry,”Second Edition, Worth, New York, p 24Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Robert Shapiro
    • 1
  1. 1.Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations