Syntheses and Biological Effects of Leukotrienes and Analogs

  • Bernd Spur
  • Attilio Crea
  • Wilfried Peters
Part of the NATO ASI Series book series (NSSA, volume 95)


Polyunsaturated fatty acids such as arachidonic acid are transformed via the cyclooxygenase pathway into three groups of biological active compounds, the prostaglandin, the thromboxanes and the prostacyclins. These compounds are formed via the 5-Lipoxygenase pathway and play a major role as biolohical mediators on ommediate hypersensitivity reactions and inflammation 1–4.


Arachidonic Acid Total Synthesis Calcium Ionophore A23187 Phosphonium Salt Wittig Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Samuelsson, B. (1982) The leukotrienes, highly biologically active substances involved in allergy and inflammation.Angew. Chem. Int. Ed., 21: 902–910.Google Scholar
  2. 2.
    Borgeat, P. and Sirois, P. (1981) Leukotrienes: A major step in the understanding of immediate hypersensitivity reactions. J. Med. Chem. 24: 121–126.Google Scholar
  3. 3.
    Samuelsson, B., Paoletti, R. and Ramwell, P. (1983) Advances in prostaglandin, thromboxane and leukotriene research. 11: Raven Press, New York.Google Scholar
  4. 4.
    Lewis, R.A., and Austen, K.F. (1984) Molecular determinants for functional responses to the sulfidopeptide leukotrienes. J. Allergy Clin. Immunol. 74: 369–372.Google Scholar
  5. 5.
    Corey, E.J. (1982) Chemical studies on the slow reacting substances leukotrienes.Experientia, 38: 1259–1281.Google Scholar
  6. 6.
    Radmark, 0., Malmsten, C., Samuelsson, B., Goto, G., Marfat, A., and Corey, E.J. (1980) Leukotriene A: Isolation from human polymorphonuclear leukocytes.J. Biol. Chem., 255: 11828–11831.Google Scholar
  7. 7.
    Boeynaems, J.M., Brash, A.R., Oates, J.A., and Hubbard, W.C. (1980) Preparation and assay of monohydroxy-eicosatetraenoic acids. Anal. Biochem., 104: 259–267.Google Scholar
  8. 8.
    Corey, E.J., Albright, J.0., Barton, A.E., and Hashimoto, S. (1980) Chemical and enzymic synthesis of 5-HPETE, a key biological precursor of slow-reacting substance of anaphylaxis (SRS) and 5-HETE. J. Am. Chem. Soc., 102: 1435–1436.Google Scholar
  9. 9.
    Spur, B., Crea, A., Peters, W., and König, W. (1983) Formation and structure determination of 5,6-epoxy-8,11,14-Z-eicosatrienoic acid and 5-oxo-8,11,14-Z-eicosatrienoic acid.Tetrahedron. Lett. 24: 1755–1758.Google Scholar
  10. 10.
    Corey, E.J., and Hashimoto, S. (1981) A practical process for large scale synthesis of (S)-5-hydroxy-6-trans-8,11,14-ciseicosatetraenoic acid (5-HETE).Tetrahedron Lett. 22: 299–302.Google Scholar
  11. 11.
    Rokach, J., Adams, J. and Perry, R. (1983) A new general method for the synthesis of lipoxygenase products: Preparation of 5-HETE Tetrahedron Lett. 24: 5185–5188.Google Scholar
  12. 12.
    Spur, B., Crea, A., and Peters, W. unpublished resultsGoogle Scholar
  13. 13.
    Fitzsimmons, B.J. and Rokach, J. (1984) The total syntheses of several 8,15-dihydroxy arachidonic acid derivatives (8,15, LTB’s ). Tetrahedron Lett. 25: 3043–3046.Google Scholar
  14. 14.
    Zamboni, R. and Rokach, J. (1983) Stereospecific synthesis of 5S-HETE, 5R-HETE and their transformation to 5(+)HPETE. Tetrahedron Lett. 24: 999–1002.CrossRefGoogle Scholar
  15. 15.
    Baldwin, J.E., Davies, D.I., Hughes, L. and Gutteridge, N.J.A. (1979) Synthesis from arachidonic acid of potential prostaglandin precursors.J. Chem. Soc. Perkin I: 115–121.Google Scholar
  16. 16.
    Feldberg, W. and Kellaway, J.C.H. (1938) Liberation of histamine and formation of lysocithin-like substance by cobra venom. J. Physiol. ( London ), 94: 187–226.Google Scholar
  17. 17.
    Kellaway, C.H. and Trethewie, Q.J. (1940) The liberation of a slow reacting smooth muscle stimulating substance of anaphylaxis. Quart., J. Exp. Physiol., 30: 121–145.Google Scholar
  18. 18.
    Corey, E.J., Clark, D.A., Goto, G., Marfat, A., Mioskowski, C., Samuelsson, B. and Hammarstr8m, S. (1980) Stereospecific total synthesis of a “slow reacting substance of anaphylaxis”, leukotriene C-1. J. Am. Chem. Soc., 102: 1436–1438, 3663.Google Scholar
  19. 19.
    Green, R.H. and Lambeth, P.F. (1983) Leukotrienes. Tetrahedron, 39: 1687–1721.Google Scholar
  20. 20.
    Corey, E.J., Hashimoto, S. and Barton, A.E. (1981) Chirally directed synthesis of (-)-methyl-5(S),6(S)-oxido-7-hydroxyheptanoat key intermediate for the total synthesis of leukotriene C,D,E. J. Am. Chem. Soc., 103: 721–722.Google Scholar
  21. 21.
    Rossiter, B.E., Katsuki, T. and Sharpless, K.B. (1981) Asymmetric epoxidation provides shortest routes to four chiral epoxy alcohols which are key intermediates in the syntheses of methymycin, erythromycin, leukotriene C-1 and disparlure. J. Am. Chem. Soc. 103: 464.Google Scholar
  22. 22.
    Pridgen, N.L., Shilcrat, S.C. and Lantos, I (1984) Asymetric epoxidation of allylic alcohols employing 4,5-diphenyloxazole as masked ester functionality. Tetrahedron Lett. 25: 2835–2838.CrossRefGoogle Scholar
  23. 23.
    Buck, J.C., Ellis, F. and North, P.C. (1982) A novel stereospecific synthesis of (+)-leukotriene A4 (LTA4), methyl ester.Tetrahedron Lett., 23: 4161–4162.CrossRefGoogle Scholar
  24. 24.
    Corey, E.J., Mehrota, M.M. and Cashman, J.R. (1983) New synthetic routes to leukotrienes and other arachidonate derived epoxy eicosatetraenoic acids (EPETEs). Exclusion of the hydroxy epoxide pathway from leukotriene biosynthesis. Tetrahedron Lett. 24: 4917–4920.Google Scholar
  25. 25.
    Cohen, N. et al (1983) Syntheses of leukotrienes C4, D4 and E4. J. Am. Chem. Soc., 105: 3661–3672Google Scholar
  26. 26.
    Corey, E.J., Marfat, A., Goto, G. and Brion, F. (1980) Leukotriene B4. Total synthesis and assignment of stereochemistry.J. Am. Chem. Soc., 102: 7984–7985.Google Scholar
  27. 27.
    Corey, E.J., Marfat, A., Munroe, J., Kim, K.S., Hopkins, P.B. and Brion, F. (1981) A stereocontrolled and effective synthesis of leukotriene B. Tetrahedron Lett., 22: 1077–1080.CrossRefGoogle Scholar
  28. 28.
    Corey, E.J., Pyne, S.G.,and Su, W. (1983) Total synthesis of leukotriene B5. Tetrahedron Lett., 24: 4883–4886.Google Scholar
  29. 29.
    Spur, B., Crea, A., Peters, W. and K8nig, W. (1984) Synthesis of leukotriene B3. Arch. Pharm.(Weinheim), 317: in press.Google Scholar
  30. 30.
    Serhan, C.N., Hamberg, M. and Samuelsson, B. (1984) Trihydroxytetraenes: A novel series of compounds formed from arachidonic acid in human leukocytes. B.B.R.C., 118: 943–949.Google Scholar
  31. 31.
    Spur, B., Crea, A., Peters, W. and K8nig, W. (1984) Synthesis of Leukotriene C5, D5, and E5. Arch. Pharm. ( Weinheim ) 317: 280–1.Google Scholar
  32. 32.
    Spur, B., Jendralla, H., Crea, A., Peters, W. and K8nig, W. (1984) Syntheses of 7Z,9E,11E,14Z-leukotriene C4, D4, E4.Arch. Pharm. ( Weinheim ), 317: 651–652.Google Scholar
  33. 33.
    Spur, B., Crea, A., Peters, W. and K8nig, W. (1984) Synthese of leukotriene analogs. Arch. Pharm. ( Weinheim ) 317: 647–648.Google Scholar
  34. 34.
    Spur, B., Crea, A., Peters, W. and K8nig, W. (1983) Synthesis of 11,12,14,15-Tetrahydro-leukotriene C, D, E, via A. Tetrahedron Lett., 24: 2135–2136.Google Scholar
  35. 35.
    Spur, B., Crea, A., Peters, W and K8nig, W. (1983) Synthese und biologische Eigenschaften der 14,15-Didehydro-leukotriene und ihrer Methylester. Arch. Pharm. ( Weinheim ) 316: 968–970.Google Scholar
  36. 36.
    Spur, B., Crea, A., Peters, W. and K8nig, W. (1983) Synthesis of 9,10,11,12,14,15-hexahydro-leukotriene E. Arch. Pharm. ( Weinheim ), 316: 572–574.Google Scholar
  37. 37.
    Corey, E.J., Park, H., Barton, A. and Níi, Y. (1980) Synthesis of three potential inhibitors of the biosynthesis of leukotriene A-E. Tetrahedron Lett., 21: 4243–4246.CrossRefGoogle Scholar
  38. 38.
    Spur, B., Crea, A., Peters, W. and König, W. (1984) Synthesis of 5,6-thialeukotrienes, inhibitors of the leukotriene biosynthesis. Arch. Pharm. ( Weinheim ), 317: 84–85.Google Scholar
  39. 39.
    Zamboni, R. and Rokach, J. (1983) Synthesis of the aza analog of LTA4. Tetrahedron Lett., 24: 331–334.CrossRefGoogle Scholar
  40. 40.
    Nicolaou, K.C., Petasis, N.A. and Seitz, S.P. (1981) 5,6-Methanoleukotriene A4. A stable and biologically active analog of leukotriene A4. J. Chem. Soc. Chem. Commun., 1195–1196.Google Scholar
  41. 41.
    Spur, B., Crea, A. and Peters, W. (1984) Novel synthesis of Methyl-6-formyl-trans-5,6-methanohexanoate. Z. Naturforsch. ( B) 125–125.Google Scholar
  42. 42.
    Corey, E.J., Cashman, J.R., Kantner, S.S. and S.W. Wright (1984) Rationally designed, potent competitive inhibitors of leukotriene biosynthesis. J. Am. Chem. Soc. 106: 1503–1504.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Bernd Spur
    • 1
    • 2
  • Attilio Crea
    • 3
  • Wilfried Peters
    • 1
  1. 1.Department of ChemistryHarvard UniversityCambridgeUSA
  2. 2.Department of Rheumatology and Immunology, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  3. 3.Institut für Medizinische Mikrobiologie und Institut für Anorganische Chemie IUniversität DüsseldorfDüsseldorf 1Germany

Personalised recommendations