Correlation Between K+ Fluxes and the Arachidonic Acid Cascade in Human Leukocyte Stimulated with a 23187 or Melittin

  • Monique Braquet
  • Mara d’Onofrio
  • Ricardo Garay
  • Pierre Braquet
Part of the NATO ASI Series book series (NSSA, volume 95)


It is well known that leukocytes play key roles in mechanisms of body defense against both endotoxins and exotoxins. The factors involved in triggering such defense mechanisms involve an activation of cellular membrane processes, among which is the release (from phospholipids) of AA and its subsequent metabolism into various icosanoids. The liberation of such icosanoids (e.g. LTs, PGs, HPETEs), in addition to the formation of superoxide and other oxygen free radicals and the liberation of histamine and certain degradative enzymes (e.g., elastase, collagenase), play key roles not only in the destruction of suitable ingestible particles but also in the recruitment (chemotaxic effect) of other cells for this process. All of these events depend upon the generation and transmission of a membrane signal which involves mainly membrane metabolism and ion transport1.


Human Leukocyte Leukocyte Activation Arachidonic Acid Cascade Membrane Signal Transient Hyperpolarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.E.Smolen, H.M. Korchak and G. Weissmann in:Cell Biology of the Secretory Process (M.Cantin, ed), Karger, Basel, pp 517–545 (1984)Google Scholar
  2. 2.
    O. Oelz, H.R. Knapp, H.R. Roberts, L.J.Oelz, B.J.Sweetman, J.A.Oates and P.W. Reed. Calcium dependent stimulation of thromboxane and prostaglandin biosynthesis by ionophores. In: Advances in Prostaglandin and Thrombanxe Research, Vol.3 (C.Galli, ed.) Raven Press, New York, pp. 148–158 (1978).Google Scholar
  3. 3.
    R. Dusing, R. Scherhag, R. Tippelman, U. Udde, K. Glanzer and H.J. Kramer. Arachidonic acid metabolism in isolated rat aorta. Dependence of prostacyclin biosynthesis on extracellular potassium concentration. J. Biol. Chem. 257: 1993–1996 (1982).Google Scholar
  4. 4.
    J.R. Gill, Bartter’s syndrome. Annu. Rev. Med. 31: 405–419 (1980).CrossRefGoogle Scholar
  5. 5.
    F. Skrabal, J. Aubock and H. Hortnagl, Low Sodium/High potassium diet for prevention of hypertension: probable mechansims of action. Lancet, 2 (8252): 895–900 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    W. Willbrandt. A relation between the permeability of the red cell membrane and its metabolism. Trans. Faraday Soc. 33: 956–959 (1937).Google Scholar
  7. 7.
    G. Gardos. Biochem. Biophys. Acta, 30, 653–654 (1958).CrossRefGoogle Scholar
  8. 8.
    F.M.Kregenow and J.F.Hoffman, Some Kinetic and metabolic characteristics of calcium-induced potassium transport in human red cells, J. Gen. Physiol. 60: 406–429 (1972).CrossRefGoogle Scholar
  9. 9.
    V.L. Lew and H.G.Ferreìra in: Membrane Transport in Red Cells ( J.C. Ellory and V.L. Lew, eds), Academic Press, New York, pp 93–100 (1977).Google Scholar
  10. 10.
    V.L. Lew and H.G. Ferreira: Curr. Top. Membr.Transp. 20:217–277 (1978) .Google Scholar
  11. 11.
    J.F. Hoffman, D.R. Yingst, J.M. Goldinger, R.M. Blum and P.A.Knauf in: Membrane Transport in Erythrocytes (U.V. Lassen, H.H. Ussing and J.0. Wieth, eds.) Munksgaard, Copenhagen, pp. 178–192 (1980).Google Scholar
  12. 12.
    W. Schwartz and H. Passow, Cat+-activated K+ channels in erythrocytes and excitable cells. Ann. Rev. Physiol. 45: 359–374 (1983).CrossRefGoogle Scholar
  13. 13.
    G. Gardos, The role of Ca in the potassium permeability of human erythrocytes. Acta Physiol Acad.Sci.Hung. 15: 121–125. (1959).Google Scholar
  14. 14.
    G. Gardos, Effect of ethylenediaminetetraacetate on the permeability of human erythrocytes. Bioch. Biophys. Acta Physiol. Acad. Sci Hung. 14: 1–5 (1958).Google Scholar
  15. 15.
    O.H. Petersen and Y. Maruyamä, Calcium-activated potassium channels and their role in secretion. Nature (London) 307 : 693–6 (1984) .Google Scholar
  16. 16.
    I. Atwater, C.M. Dawson, B.Ribalet and E.Rojas, Potassium permeability activated by intracellular calcium ion concentration in the pancreatic B - cell. J. Physiol. 288 :575–88 (1979) .Google Scholar
  17. 17.
    W.J. Malaisse and A. Herchuelz, Nutritional regulation of K+ conductance: an unsettled aspect of pancreatic B cell physiology. In: Biochemical actions of hormones Vol IX G.Academic Press Inc. N.Y. pub., pp. 69–92 (1982).Google Scholar
  18. 18.
    J.C. Henquin4 Opposite effects of intracellular Ca2+ and glucose on K permeability of pancreatic islet cells. Nature (London) 280: 66–68 (1979).Google Scholar
  19. 19.
    J.A. Young,in: Membrane transport in biology Vol. IV G.Giebisch ed., Springer (Berlin) pub.,pp. 563–692 (1979).Google Scholar
  20. 20.
    W.W. Douglas and A.M. Poisner, The influence of calcium on the secretory response of the submaxillary gland to aceth!lcholine or to nordrenaline. J. Physiol. (London) 165: 528–541 (1963).Google Scholar
  21. 21.
    P. Braquet, B.Spinnewyn, B.Lehuu, M.Braquet,E. Chabrier, F. Dray and F.V. DeFeudis, Prost.Leukotri.Med., in press.Google Scholar
  22. 22.
    P. Borgeat, B. Fruteau de Laclos:, S. Rabinovitch, S. Picard, P. Braquet, J. Hebert and J. Laviolette, J. Allergy Immunol., in press.Google Scholar
  23. 23.
    G.M. Burgess, M. Claret, D.H. Jenkinson, Effects of quinine and apamin on the calcium-dependent potassium permeability of mammalian hepatocytes and red cells. J. Physiol.(London) 317: 67–90 (1981) .Google Scholar
  24. 24.
    H.M.Karchak and G. Weissmann, Changes in membrance potential of human granulocytes antecede the metabolic responses to surface stimulation. Proc.Natl. Acad.Sci. USA 75: (8). 3818–22 (1978).Google Scholar
  25. 25.
    E. Edmonson and Ting-Kai Li, Effects of the ionophore A23187 on erythrocytes: relationship of ATP.2–3 diphosphoglycerate to calcium binding capacity. Biochem. Biophys.Acta. 443: 106113 (1976).Google Scholar
  26. 26.
    E.K. Gallin, M.L.Wiederhold, P.E. Lipsky and A.S.Rosenthal Spontaneous and induced membrane hyperpolarizations in macrophages. J. Cell Physio1. 86: 653–661 (1975).Google Scholar
  27. 27.
    E.K. Callin and J.I. Gallin. Interaction of chemotactic factors with human macrophages. J. Cell Biology, 75: 277–89 (1977).Google Scholar
  28. 28.
    G.M. Oliveira-Castro and G.A. Dos Reis. Electrophysiology of phagocytic membranes. III. Evidence for a calcium-dependent potassium permeability change during slow hyperpolarizations of activated macrophages. Biochem.Biophys.Acta, 640: 500–511, (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    H.J. Showel, P.H. Naccache,+R.I.+Sha’afid E.L. Becker. The effects of extra-cellular K+, Na, and Ca on lysosomal enzyme secretion from polymorphonuclear leukocytes. J.Immun. 119: 804–811 (1977).Google Scholar
  30. 30.
    H.M. Korchak and G. Weissman. Stimulus-response coupling in the human neutrophil. Membrane potential changes and the role of extra-cellular Na +. Biochem.Biophys.Acta, 601: 180–194 (1980).Google Scholar
  31. 31.
    M. Braquet, A. Chereau, E. Chabrier and P. Braquet. The membrane signal in human leukocyte: Evidence for a calcium-dependent potassium permeability in A23187-induced triggering of arachidonate cascade. Biomed.Biophys.Acta (in press).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Monique Braquet
    • 1
  • Mara d’Onofrio
    • 2
  • Ricardo Garay
    • 2
  • Pierre Braquet
    • 3
  1. 1.C.R.S.S.A., Division de RadiobiochimieClamartFrance
  2. 2.INSERM U7, Hopital NeckerParisFrance
  3. 3.I.H.B. Research LaboritoriesLe PlessisFrance

Personalised recommendations