Inhibition of 5’lipoxygenase: Relevance to Inflammation

  • R. M. J. Palmer
  • J. A. Salmon
Part of the NATO ASI Series book series (NSSA, volume 95)


The mechanism by which non-steroidal anti-inflammatory drugs (NSAID), such as aspirin and indomethacin, provide symptomatic relief for patients with inflammatory disease is generally recognised to be by inhibition of the formation of prostaglandins (PG’s) from arachidonic acid (AA). The evidence for the involvement of PG’s in inflammation is that elevated levels of PG’s have been detected in inflamed tissues and that PG’s, particularly PGE2, have properties which suggest that they could mediate oedema, erythema and hyperalgesia. In addition, therapeutic doses of NSAID reduce the concentrations of PG’s in inflamed tissues (for review see 1).


Lipoxygenase Pathway Inflammatory Exudate Human Polymorphonuclear Leukocyte Lipoxygenase Product Plasma Exudation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.J. Flower, S. Moncada and J.R. Vane, Analgesic-antipyretics and anti-inflammatory agents: Drugs employed in the treatment of gout. In: Pharmacological Basis of Therapeutics Ed. A.G. Gilman, L.S. Goodman and A. Gilman, 682–728 (1980).Google Scholar
  2. 2.
    G.A. Higgs, K.E. Muggeridge, S. Moncada and J.R. Vane, The effects of non-steroid anti-inflammatory drugs on leukocyte accumulation in carrageenin-induced inflammation. Eur. J. Pharmacol. 66: 81–86 (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    R.C. Haynes and F. Murad, Adrenocorticotrophic hormone; adrenocortical steroids and their synthetic analogues; inhibitors of adrenocortical steroid biosynthesis. In: Pharmacological Basis of Therapeutics. Ed. A.G. Gilman, L.S. Goodman and A. Gilman, 1466–1496 (1980).Google Scholar
  4. 4.
    H. Kunze and W. Vogt, Significance of phospholipase A for prostaglandin formation. Ann. N.Y. Acad. Sci. 180: 123–125 (1971).PubMedCrossRefGoogle Scholar
  5. 5.
    H. Vonkeman and D.A. Van Dorp, The action of prostaglandin synthetase on 2-arachidonyl lecithin. Biochim. Biophys. Acta. 164: 430–432 (1968).PubMedGoogle Scholar
  6. 6.
    R.J. Flower, G.J. Blackwell, M. Di Rosa and L. Parente, Mechanism of steroid-induced inhibition of arachidonate oxygenation. In: Mechanisms of steroid action. Ed. Lewis G.P. and Ginsberg, M. MacMillan Press. 97–114 (1981).Google Scholar
  7. 7.
    B. Samuelsson, S. Hammarstrom, R.C. Murphy and P. Borgeat, Leukotrienes and slow reacting substance of anaphylaxis (SRS-A). Allergy. 35: 375–381 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    E.J. Goetzl and F.F. Sun, Generation of unique mono-hydroxy- eicosatetraenoic acids from arachidonic acid by human neutrophils. J. Exp. Med. 150: 406–411 (1979).PubMedCrossRefGoogle Scholar
  9. 9..
    J.T. O’Flaherty, M.J. Thomas, C.J. Lees and C.E. McCall, Neutrophil-aggregating activity of monohydroxy- eicosatetraenoic acids. Am. J. Pathol. 104: 55–62 (1981).PubMedGoogle Scholar
  10. 10.
    R.M.J. Palmer, R.J. Stepney, G.A. Higgs and K.E. Eakins, Chemokinetic activity of arachidonic acid lipoxygenase products on leukocytes from different species. Prostaglandins. 20: 411–418 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    W.F. Stenson and C.W. Parker, Monohydroxy-eicosatetraenoic acids (HETEs) induce degranulation of human neutrophils. J. Immunol. 124: 2100–2104 (1980).PubMedGoogle Scholar
  12. 12.
    G.A. Higgs, J.A. Salmon and J.A. Spayne, The inflammatory effects of hydroperoxy and hydroxy-acid products of arachidonate lipoxygenase in rabbit skin. Br. J. Pharmacol. 74: 429–433 (1981).PubMedGoogle Scholar
  13. 13.
    P. Bhattacherjee, B. Hammond, J.A. Salmon, R.J. Stepney and K.E. Eakins, Chemotactic response to some arachidonic acid lipoxygenase products in the rabbit eye. Eur. J. Pharmacol. 73: 21–28 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    M.A. Bray, Pharmacology and pathophysiological of leukotriene B4. Brit. Med. Bull. 39: 249–254 (1983).PubMedGoogle Scholar
  15. 15.
    C.V. Wedmore and T.J. Williams, Control of vascular permeability by polymorphonuclear leukocytes in inflammation. Nature (Lond). 289: 646–650 (1981).CrossRefGoogle Scholar
  16. 16.
    M.A. Bray, F.M. Cunningham, A.W. Ford-Hutchinson and M.J.H. Smith, Leukotriene B4: a mediator of vascular permeability. Br. J. Pharmacol. 72: 483–486 (1981).PubMedGoogle Scholar
  17. 17.
    C.L. Malmsten, J. Palmblad, A.M. Uden, O. Radmark, L. Engstedt and B. Samuelsson, Leukotriene B4: a highly potent and stereospecific factor stimulating migration of polymorphonuclear leukocytes. Acta. Physiol. Scand. 110: 449–451 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    I. Hafstrom, J. Palmblad, C.L. Malmsten, O. Radmark and B. Samuelsson, Leukotriene B4- a stereospecific stimulator for release of lysosomal enzymes from neutrophils. FEBS Lett. 130: 146–148 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    A.W. Ford-Hutchinson, M.A. Bray, F.M. Cunningham, E.M. Davidson and M.J.H. Smith, Isomers of leukotriene B, possess different biological potencies. Prostaglandins. 21: 143 151 (1981).Google Scholar
  20. 20.
    A.W. Ford-Hutchinson, G. Brunet, P. Savard and S. Cliarleson, Leukotriene B4, polymorphonuclear leukocytes and inflammatory exudates in the rat. Prostaglandins. 28: 13–37 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    D.W. Goldman and E.J. Goetzl, Specific binding of leukotriene B4 to receptors on ’ human polymorphonuclear leukocytes. J. Immunol. 129: 1600–1604 (1982).PubMedGoogle Scholar
  22. 22.
    R.A. Kreisle and C.W. Parker, Specific binding of leukotriene B to a receptor on human polymorphonuclear leukocytes. J. Exp. Med. 157: 628–641 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    P.M. Simmons, J.A. Salmon and S. Moncada, The release of leukotriene B, during experimental inflammation. Biochem. Pharmacol. 3n 1353–1359 (1983).CrossRefGoogle Scholar
  24. 24.
    L.B. Klickstein, J. Shapleigh and E.J. Goetzl, Unique products of the oxygenation of arachidonic acid in synovial fluid in rheumatoid arthritis and spondylarthritis. Arth. Rheum. 23: 704–708 (1980).Google Scholar
  25. 25.
    S.A. Rae, E.M. Davidson and M.J.H. Smith, Leukotriene B(, an inflammatory mediator in gout. Lancet. 2: 1122–1123 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    S.D. Brain, R.D.R. Camp, P.M. Dowd, A.K. Black, P.M. Woollard, A.I. Mallet and M.W. Greaves, Psoriasis and Leukotriene B4. Lancet. 2: 762 (1982).PubMedCrossRefGoogle Scholar
  27. 27.
    J.A. Salmon, Bioassay and radioimmunoassay of eicosanoids. Brit. Med. Bull. 39: 227–231 (1983).PubMedGoogle Scholar
  28. 28.
    R.D.R. Camp, A.A. Coutts, M.W. Greaves, A.B. Kay and M.J. Walport, Responses of human skin to intradermal injections of leukotrienes C4, D4 and B4. Br. J. Pharmacol. 75: 168P (1982).Google Scholar
  29. 29.
    J. Bisgaard, J. Kristensen and J. Sondergaard, The effect of leukotriene C4 and D1 on cutaneous blood flow in humans. Prostaglandins. 23: 797–801 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    S-E., Dahlen, J. Bjork, P. Hedqvist, K-E, Arfors, S. Hammarstrom, J.A. Lindgren and B. Samuelsson, Leukotrienes promote plasma leakage and leukocyte adhesion in post capillary venules: In vivo effects with reference to the acute inflammatory response. Proc. Natl. Acad. Sci. U.S.A. 78: 3887–3891 (1981).CrossRefGoogle Scholar
  31. 31.
    A.W. Ford-Hutchinson and A. Rackman, Leukotrienes as mediators of skin inflammation. Brit. J. Dermatol. 109: 26–29 (1983).CrossRefGoogle Scholar
  32. 32.
    G. Hansson and O. Radmark, Leukotriene C4: isolation from human polymorphonuclear leukocytes. FEBS Lett. 127: 87–90 (1980).CrossRefGoogle Scholar
  33. 33.
    U. Aehringhaus, R.H. Wobling, W. Konig, C. Patrono, B.M. Peskar and B.A. Peskar, Release of leukotriene C4 from human polymorphonuclear leukocytes as determined by radioimmunoassay. FEBS Lett. 146: 111–114 (1982).PubMedCrossRefGoogle Scholar
  34. 34.
    J.T. Zakrewski, N.C. Barnes, P.J. Piper and J.F. Coslello, Quantitation of leukotrienes in asthmatic sputum. Brit. J. Pharmacol. Proceedings of Dec. 1984 Meeting.Google Scholar
  35. 35.
    D.J. Masters and R.M. McMillan, 5-lipoxygenase from human leukocytes. Brit. J. Pharmacol. 81: 70P (1984).Google Scholar
  36. 36.
    R.W. Randall, K.E. Eakins, G.A. Higgs, J.A. Salmon and J.E. Tateson, Inhibition of arachidonic acid cyclooxygenase and lipoxygenase activities of leukocytes by indomethacin and compound BW755C. Agents and Actions. 10: 553–555 (1980).PubMedCrossRefGoogle Scholar
  37. 37.
    J.A. Salmon, P.M. Simmons and R.M.J. Palmer, A radioimmunoassay for leukotriene B4. Prostaglandins. 24: 255–265 (1982).CrossRefGoogle Scholar
  38. 38.
    M. Hamberg and B. Samuelsson, Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc. Natl. Acad. Sci. U.S.A. 71: 3400–3404 (1974).PubMedCrossRefGoogle Scholar
  39. 39.
    G.M. Bokoch and P.M. Reed, Evidence for inhibition of leukotriene A[l 1 synthesis by 5,8,11,14-eicosatetraynoic acid in guinea pig polymorphonuclear leukocytes. J. Biol. Chem. 256, 4156–4159 (1981).PubMedGoogle Scholar
  40. 40.
    S. Hammarstrom, Selective inhibition of platelet n-8 lipoxygenase by 5,8,11-eicosatriynoic acid. Biochim. Biophys. Acta. 487: 517–519 (1977).PubMedGoogle Scholar
  41. 41.
    F.F. Sun, J.C. McGuire, D.R. Morton, J.E. Pike, H. Sprecher and W.H. Kuman, Inhibition of platelet arachidonic acid 12lipoxygenase by acetylenic acid compounds. Prostaglandins. 21: 333–343 (1981).PubMedCrossRefGoogle Scholar
  42. 42.
    J.E. Wilhelm, S.K. Sankarappa, M. Van Rollins and H. Sprecher, Selective inhibitors of platelet lipoxygenase: 4,7,10,13icosatetraynoic acid and 5,8,11,14-henicosatetraynoic acid. Prostaglandins. 21: 323–332 (1981).PubMedCrossRefGoogle Scholar
  43. 43.
    M. Hamberg, On the formation of thromboxane B and 12L-hydroxy 5,8,10,14-eicosatetraenoic acid (12-ho-20:47 in tissues from the guinea pig. Biochim. Biophys Acta. 431: 651–654 (1976).PubMedGoogle Scholar
  44. 44.
    J.Y. Vanderhoek, R.W. Bryant and J.M. Bailey, 15-hydroxy-5,8,11,13-eicosatetraenoic acid. A potent and selectiveinhibitor of platelet lipoxygenase. J. Biol. Chem. 255: 59965998 (1980).Google Scholar
  45. 45.
    J.Y. Vanderhoek, R.W. Bryant and J.M. Bailey, Inhibition of leukotriene biosynthesis by the leukocyte product 15-hydroxy5,8,11,13-eicosatetraenoic acid. J. Biol. Chem. 10064–10066 (1980).Google Scholar
  46. 46.
    E.A. Ham, D.D. Soderman, M.E. Zanetti, M.W., H.W. Dougherty, E. M.Cauley and F.A. Kuehl, Inhibition by prostaglandins of leukotriene B release from activated neutrophils. Proc. Natl. Acad. Sci. U.T.A. 80: 4349–4353 (1983).Google Scholar
  47. 47.
    H-E, Claesson, U. Lundberg and C. Malmsten, Serum-coated zymosan stimulates the synthesis of leukotriene B4 in human polymorphonuclear leukocytes. Inhibition by cyclic AMP. Biochem. Biophys. Res. Commun. 99: 1230–1237. (1981).CrossRefGoogle Scholar
  48. 48.
    K. Sekiya and H. Okuda, Selective inhibition of platelet lipoxygenase by baicalein. Biochem. Biophys. Res Commun. 105: 1090–1095 (1982).PubMedCrossRefGoogle Scholar
  49. 49.
    J. Baumann, F.V. Bruchhausen and G. Wurm, Flavonoids and related compounds as inhibitors of arachidonic acid peroxidation. Prostaglandins. 20: 627–639 (1980).PubMedCrossRefGoogle Scholar
  50. 50.
    W.C. Hope, A.F. Welton, C. Fiedler-Nagy, C. Batula-Bernardo and J.W. Coffey, In vitro inhibition of the biosynthesis of slow reacting substance of anaphylaxis (SRS-A) and lipoxygenase activity by quercetin. Biochem. Pharmacol. 32: 367–371 (1983).Google Scholar
  51. 51.
    T. Neichi, Y. Koshihara and S. Murota, Inhibitory effect of esculetin on 5-lipoxygenase and leukotriene biosynthesis. Biochim. Biophys. Acta. 753: 130–132 (1983).PubMedGoogle Scholar
  52. 52.
    M.A. Bray, Retinoids are potent inhibitors of the generation of rat leukocyte leukotriene B -like activity in vitro. Eur. J. Pharmacol. 98: 61–67 (1984).PubMedCrossRefGoogle Scholar
  53. 53.
    Y. Koshihara, T. Neichi, S. Murota, A. Lao, Y. Fujimoto and T. Tatsuno, Caffeic acid as a selective inhibitor for leukotriene biosynthesis. Biochim. Biophys. Acta. 792: 92–97 (1984).PubMedGoogle Scholar
  54. 54.
    G.A. Higgs, R.J. Flower and J.R. Vane, A new approach to anti- inflammatory drugs. Biochem. Pharmacol. 28: 1959–1961 (1979).PubMedCrossRefGoogle Scholar
  55. 55.
    O. Radmark, C. Malmsten and B. Samuelsson, The inhibitory effects of BW755C on arachidonic acid metabolism in human polymorphonuclear leukocytes. FEBS Lett. 110: 213–215 (1980).PubMedCrossRefGoogle Scholar
  56. 56.
    J.R. Walker and W. Dawson, Inhibition of rabbit PMN lipoxygenase activity by benoxaprofen. J. Pharm. Pharmacol. 31: 778–780 (1979).PubMedCrossRefGoogle Scholar
  57. 57.
    J.A. Salmon, L.C. Tilling and S. Moncada, Benoxaprofen does not inhibit formation of leukotriene BCCi~ in a model of acute inflammation. Biochem. Pharmacol. L3: 2928–2930 (1984).Google Scholar
  58. 58.
    J.A. Salmon, L.C. Tilling and S. Moncade, Evaluation of inhibitors of eicosanoid synthesis in leukocytes: possible pitfall of using calcium ionophore A23187 to stimulate 5’-lipoxygenase. Sumbitted.Google Scholar
  59. 59.
    J.L. Humes, S. Sadowski, M. Galavage, M. Goldenberg, E. Subers, F.A. Kuehl and R. Bonney, Pharmacological effects of non-steroidal anti-inflammatory agents on prostaglandin and leukotriene synthesis in mouse peritoneal macrophages. Biochem. Pharmacol. 32: 2319–2322 (1983).PubMedCrossRefGoogle Scholar
  60. 60.
    S. Fischer, M. Struppler and P.C. Weber, In vivo and in vitro effects of nafazatrom (BAY G 6576), an anti-thrombotic compound, on arachidonic acid metabolism in platelets and vascular tissue. Biochem. Pharmacol. 32: 2231–2236 (1983).Google Scholar
  61. 61.
    W.D. Busse, M. Mardin, R. Grutzmann, L.J. Marnett and T.E. Eling, Effect of nafazatrom and other lipoxygenase inhibitors on guaiacol peroxidation and arachidonic acid metabolism in microsomes and blood cells. V. Int. Conf. Prostaglandins Florence. p147 (1982).Google Scholar
  62. 62.
    Y. Koshihara, S. Murota, N. Petasis and K.C. Nicolaou, Selective inhibition of 5-lipoxygenase by 5,6-methano leukotriene Am a stable analogue of leukotriene A4. FEBS Lett. 143: 1Y - 16 (1982).Google Scholar
  63. 63.
    Y. Arai, M. Toda and M. Hayashi, Synthesis of (±)-carbanalogues of 5-HPETE and leukotrene A4. Adv. Prostaglandin,Thromboxane and Leukotriene Res. 11: 169–172 (1983).Google Scholar
  64. 64.
    E.J. Corey, J.R. Cashman, S.S. Kantner and S.W. Wright, Rationally designed potent competitive inhibitors of leukotriene biosynthesis. J. Am. Chem. Soc. 106: 1503–1504 (1984).CrossRefGoogle Scholar
  65. 65.
    T. Yoshimoto, C. Yokoyama, K. Ochi, S. Yamamoto, Y. Maki, Y. Ashida, S. Terao and M. Shiraishi, 2,3,5-trimethyl-6-(12hydroxy-5, 10-dodecadinyl)-1,4-benzoquinone (AA 861), a selective inhibitor of the 5-lipoxygenase reaction and the biosynthesis • of slow reacting substance of anaphylaxis. Biochim. Biophys. Acta. 713: 470–473 (1982).PubMedGoogle Scholar
  66. 66.
    M.K. Bach, J.R. Brashler, H.W Smith, F.A. Fitzpatrick, F.F. Sun and J. C. McGuire, 6,9-deepoxy-6,9-(phenylimimo)- 6,8-prostaglandin I (U60257), a new inhibitor of leukotriene C and D synthesis: in vitro studies. Prostaglandins. 23: 759–771 (1982).PubMedGoogle Scholar
  67. 67.
    P. Needleman. A. Raz, M. Minkes, J.A. Ferrendelli and H. Sprecher, Triene prostanglandins:prostacyclin and thromboxane biosynthesis and unique biological properties. Proc. Natl. Acad. Sci. 76: 944–948 (1979).PubMedCrossRefGoogle Scholar
  68. 68.
    D.A. Van Dorp, Aspects of the biosynthesis of prostaglandins. Progr. Biochem. Pharmacol. 3: 71–75 (1967).Google Scholar
  69. 69.
    B.A. Jakschik, A.R. Sams, H. Sprecher and P. Needleman, Fatty acid structural requirement for leukotriene biosynthesis. Prostaglandins. 23: 401–410 (1980).CrossRefGoogle Scholar
  70. 70.
    R.C. Murphy, W.C. Pickett, B.R. Culp and W.E.M. Lands, Tetraene and pentaene leukotrienes: selective production from murine mastocytoma cells after dietary manipulation. Prostaglandins. 22: 613–622 (1981).PubMedCrossRefGoogle Scholar
  71. 71.
    T. Terano, J.A. Salmon and S. Moncada, Biosynthesis and biological activity of leukotriene B5. Prostaglandins. 27: 217–232 (1984).PubMedCrossRefGoogle Scholar
  72. 72.
    C. Yokoyama, K. Mizuno, H. Mitachi, T. Yoshimoto, S. Yamamotoand C.R. Pace-Asciak, Partial purification and characterisation of arachidonate 12-lipoxygenase from rat lung. Biochim. Biophys. Acta. 750: 237–241 (1983).Google Scholar
  73. 73.
    J.A. Salmon, A radioimmunoassay for 6-keto-PGFi. Prostaglandins. 15: 383–397 (1978).PubMedCrossRefGoogle Scholar
  74. 74.
    J.A. Salmon, P.M. Simmons and S. Moncada, The effects of BW755C and other anti-inflammatory drugs on eicosanoid concentrations and leukocyte accumulation in experimentally-induced acute inflammation. J. Pharm. Pharmacol. 35: 808813 (1983).Google Scholar
  75. 75.
    J. Palmblad, A.M. Uden, J-A, Lindgren, O. Radmark, G. Hansson and C. Malmsten, Effects of novel leukotrienes on neutrophil migration. FEBS Lett. 144: 81–84 (1982).Google Scholar
  76. 76.
    R.D.R. Camp, P.M. Woollard. A.I. Mallet, N.J. Fincham, A.W. Ford- Hutchinson and M.A. Bray, Neutrophil aggregating and chemokinetic properties of a 5,12,20-trihydroxy-6,8,10,14eicostetraenoic acid isolated from human leukocytes. Prostaglandins. 23: 631–641 (1982).PubMedCrossRefGoogle Scholar
  77. 77.
    R.M.J. Palmer and J.A. Salmon, Comparison of the effects of some compounds on human neutrophil degranulation and leukotriene B and thromboxane B2 Biochem. Pharmacol. In Press (1985). 2Google Scholar
  78. 78.
    T. Terano, J.A. Salmon and S. Moncada, Effect of orally administered eicosapentaenoic acid (EPA) on the formation of leukotriene B1. and leukotriene B5 by rat leukocytes. Biochem. Pharmacol. 3Y: 3071–3076 (1984).CrossRefGoogle Scholar
  79. 79.
    T. Terano, J.A. Salmon, G.A. Higgs and S. Moncada, Anti- inflammatory activity of eicosapentaenoic acid. Submitted.Google Scholar
  80. 80.
    H.J. Showell, P.H. Naccache, R.I. Sha’afi and E.L. Becker, Inhibition of rabbit neutrophil lysosomal enzyme secretion, non-stimulated and chemotactic factor stimulated locomotion by nordihydroguaiaretic acid. Life Sci. 27: 421–426 (1980).PubMedCrossRefGoogle Scholar
  81. 81.
    G.M. Bokoch and P.W. Reed, Inhibition of the neutrophil oxidative response to a chemotactic peptide by inhibitors of arachidonic acid oxygenation. Biochem. Biophys. Res. Commun. 90: 481487 (1979).Google Scholar
  82. 82.
    J.E. Smolen and G. Weissmann, Effects of indomethacin, 5,8,11.14eicosatetraynoic acid and p-bromophenacyl bromide on lysosomal enzyme release and superoxide anion generation by human polymorphonuclear leukocytes. Biochem. Pharmacol. 29: 533–538 (1980).PubMedCrossRefGoogle Scholar
  83. 83.
    J.T. O’Flaherty, H.J. Showell, P.A. Ward and E.L. Becker, A possible role of arachidonic acid in human neutrophil aggregation and degranulation. Am. J. Pathol. 96: 799–809 (1979).PubMedGoogle Scholar
  84. 84.
    R.J. Smith, F.F. Sun, S.S. Iden, B.J. Bowman, H. Specher and J.C. McGuire, An evaluation of the relationship between arachidonic acid lipoxygenation and human neutrophil degranulation. Clin. Immunol. Immunophathol. 20: 157–169 (1981).CrossRefGoogle Scholar
  85. 85.
    R.M.J. Palmer and J.A. Salmon, Stimulation of leukotriene B4 (LTB4) release from human neutrophils by N-formyl-Lmethionyl L-leucyl-L-phenylalanine (FMLP), serum-treated zymosan (STZ) and A23187 and its relationship to degranulation. Immunology. 50: 65–74 (1983).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • R. M. J. Palmer
    • 1
  • J. A. Salmon
    • 1
  1. 1.Department of Pharmacology and Prostaglandin ResearchThe Wellcome Research Laboratories Langley CourtBeckenhamKentUK

Personalised recommendations