The Ecological and Physiological Significance of the Growth of Heterotrophic Microorganisms with Mixtures of Substrates

  • Thomas Egli
Part of the Advances in Microbial Ecology book series (AMIE, volume 14)


It has been estimated that globally some 500 × 1012 kg of carbon dioxide are assimilated into biomass by autotrophic organisms annually. More than 99% of this assimilated carbon is remineralized, keeping the global biogeochemical carbon cycle roughly in balance (Hedges, 1992). In both terrestrial and aquatic ecosystems the majority of this primary biomass is not consumed directly by herbivorous animals, but decays to detritus and serves as a nutritional basis for the growth of consumers (for an extensive discussion, see Fenchel and Jørgensen, 1977). There is now substantial evidence suggesting that a large part of the energy and nutrients contained in this primary biomass is processed via the microbial detritus food chain, and this mineralizing ability makes heterotrophic microorganisms an important link in the global carbon cycle (Fenchel and Jørgensen, 1977; Paul and Voroney, 1980; Wetzel, 1984; Cole et al., 1988; Mann, 1988). In addition, their ability to mineralize man-made xenobiotic organic chemicals has become increasingly important. This is illustrated by the fact that in industrialized countries the flux of synthetically produced organic material, much of which is ending up in the environment, has increased within the past two centuries to some 40 g C m−2 year−1. This figure is equivalent to approximately 15% of the net primary biomass production in these regions (Egli, 1992).


Specific Growth Rate Microbial Growth Dilution Rate Continuous Culture Carbon Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlgren, G., 1980, Effects on algal growth rates by multiple nutrient limitation, Arch. Hydrobiol. 89:43–53.Google Scholar
  2. Aker, K. C., and Robinson, C. W., 1987, Growth of Candida utilis on single-and multicomponent-sugar substrates and on waste banana pulp liquors for single-cell protein production, MIRCEN J. 3:255–274.CrossRefGoogle Scholar
  3. Al-Awadhi, N., 1989, Characterization and Physiology of Some Thermotolerant and Thermophilic Solvent-Utilizing Bacteria, Swiss Federal Institute of Technology, Zürich, Switzerland, Ph.D. thesis No. 8118.Google Scholar
  4. Al-Awadhi, N., Egli, T., Hamer, G., and Mason, C. A., 1990, The process utility of thermotolerant methylotrophic bacteria: I. An evaluation in chemostat culture, Biotechnol. Bioeng. 36:816–820.PubMedCrossRefGoogle Scholar
  5. Albertson, N. H., Nyström, T, and Kjelleberg, S., 1990a, Exoprotease activity in two marine bacteria during starvation, Appl. Environ. Microbiol. 56:218–223.PubMedGoogle Scholar
  6. Albertson, N. H., Nyström, T, and Kjelleberg, S., 1990b, Starvation-induced modulations in binding protein-dependent glucose transport in the marine Vibrio sp. S14, FEMS Microbiol. Lett. 70:205–210.Google Scholar
  7. Albertson, N. H., Nyström, T, and Kjelleberg, S., 1990c, Macromolecular synthesis during recovery of the marine Vibrio sp. S14 from starvation, J. Gen. Microbiol. 136:2201–2207.Google Scholar
  8. Alexander, M., 1994, Biodegradation and Bioremediation, Academic Press, San Diego, Calif.Google Scholar
  9. Ammerman, J. W., Fuhrman, J. A., Hagström, Å., and Azam, F., 1984, Bacterioplankton growth in seawater: I. Growth kinetics and cellular characteristics in seawater cultures, Mar. Ecol. Prog. Ser. 18:31–39.CrossRefGoogle Scholar
  10. Amy, P. S., and Morita, R. Y., 1983, Starvation-survival patterns of sixteen freshly isolated open-ocean bacteria, Appl. Environ. Microbiol. 45:1109–1115.PubMedGoogle Scholar
  11. Amy, P. S., Pauling, C., and Morita, R. Y., 1983, Recovery from nutrient starvation by a marine Vibrio sp., Appl. Environ. Microbiol. 45:1685–1690.PubMedGoogle Scholar
  12. Anderson, J. J., and Oxender, D. L., 1978, Genetic separation of high-and low-affinity transport systems for branched-chain amino acids in Escherichia coli, J. Bacteriol. 136:168–174.PubMedGoogle Scholar
  13. Azam, F., and Cho, B. C., 1987, Bacterial utilization of organic matter in the sea, in: Ecology of Microbial Communities (M. Fletcher, T. R. G. Gray, and J. G. Jones, eds.), Cambridge University Press, Cambridge, England, pp. 261–281.Google Scholar
  14. Babel, W., Brinkmann, U., and Müller, R. H., 1993, The auxiliary substrate concept—an approach for overcoming limits of microbial performance, Acta Biotechnol. 13:211–242.CrossRefGoogle Scholar
  15. Bader, F. G., 1978, Analysis of double-substrate limited growth, Biotechnol Bioeng. 20:183–202.PubMedCrossRefGoogle Scholar
  16. Bader, F. G., 1982, Kinetics of double-substrate limited growth, in: Microbial Population Dynamics (M. J. Bazin, ed.), CRC Press, Boca Raton, Fla., pp. 1–32.Google Scholar
  17. Baidya, T. K. N., Webb, F. C., and Lilly, M. D., 1967, The utilization of mixed sugars in continuous fermentation. I, Biotechnol. Bioeng. 9:195–204.CrossRefGoogle Scholar
  18. Bally, M., 1994, Physiology and Ecology of Nitrilotriacetate Degrading Bacteria in Pure Culture, Activated Sludge and Surface Waters, Swiss Federal Institute of Technology Zürich, Switzerland, Ph.D. thesis No. 10821.Google Scholar
  19. Bally, M., and Egli, T., 1995, Dynamics of substrate consumption and enzyme synthesis in Chelatobacter heintzii sp. ATCC 29600 during growth in carbon-limited chemostat culture with different mixtures of glucose and nitrilotriacetate (NTA), submitted.Google Scholar
  20. Bally, M., Wilberg, E., Kühni, M., and Egli, T., 1994, Growth and enzyme synthesis in the nitrilotriacetic acid (NTA) degrading Chelatobacter heintzii ATCC 29600, Microbiology 140:1927–1936.PubMedCrossRefGoogle Scholar
  21. Baltzis, B. C., and Fredrickson, A. G., 1988, Limitation of growth rate by two complementary nutrients: Some elementary but neglected considerations, Biotechnol. Bioeng. 31:75–86.PubMedCrossRefGoogle Scholar
  22. Bazin, M. J. (ed.), 1982, Microbial Population Dynamics. CRC Series in Mathematical Models in Microbiology, CRC Press, Boca Raton, Fla.Google Scholar
  23. Beauchamp, E. G., Trevors, J. T., and Paul, P. W., 1989, Carbon sources for bacterial denitrification, Adv. Soil Sci. 10:113–142.CrossRefGoogle Scholar
  24. Beckwith, J., 1987, The lactose Operon, in: Escherichia coli and Salmonella typhimurium, Vol. 2 (F. C. Neidhardt, J. L. Ingraham, K. Brooks, B. Magasanik, M. Schaechter, and H. E. Umbarger, eds.), American Society for Microbiology, Washington, D.C., pp. 1444–1452.Google Scholar
  25. Bell, W. H., 1980, Bacterial utilization of algal extracellular products. 1. The kinetic approach, Limnol. Oceanogr. 25:1007–1020.CrossRefGoogle Scholar
  26. Bitzi, U., Egli, T., and Hamer, G., 1991, The biodegradation of mixtures of organic solvents by mixed and monocultures of bacteria, Biotechnol. Bioeng. 37:1037–1042.PubMedCrossRefGoogle Scholar
  27. Bley, T., and Babel, W., 1992, Calculating affinity constants of substrate mixtures in a chemostat, Acta Biotechnol. 12:13–15.CrossRefGoogle Scholar
  28. Boethling, R. S., and Alexander, M., 1979a, Effect of concentration of organic chemicals on their biodegradation by natural microbial communities, Appl. Environ. Microbiol. 37:1211–1216.PubMedGoogle Scholar
  29. Boethling, R. S., and Alexander, M., 1979b, Microbial degradation of organic compounds at trace levels, Environ. Sci. Technol. 13:989–991.CrossRefGoogle Scholar
  30. Bonting, C. F. C., van Veen, H. W., Taverne, A., Kortstee, G. J. J., and Zehnder, A. J. B., 1992, Regulation of polyphosphate metabolism in Acinetobacter strain 210A grown in carbon-and phosphate-limited continuous culture, Arch. Microbiol. 158:139–144.CrossRefGoogle Scholar
  31. Brinkmann, U., and Babel, W., 1992, Simultaneous utilization of heterotrophic substrates by Hansenula polymorpha results in enhanced growth, Appl. Microbiol. Biotechnol. 37:98–103.CrossRefGoogle Scholar
  32. Brock, T. D., 1987, The study of microorganisms in situ: Progress and problems, in: Ecology of Microbial Communities (M. Fletcher, T. R. G. Gray, and J. G. Jones, eds.), Cambridge University Press, Cambridge, England, pp. 3–17.Google Scholar
  33. Brooke, A. G., and Attwood, M. M., 1983, Regulation of enzyme synthesis during the growth of Hyphomicrobium X on mixtures of methylamine and ethanol, J. Gen. Microbiol. 129:2399–2404.Google Scholar
  34. Bryan, B. A., 1981, Physiology and biochemistry of denitrification, in: Denitrification, Nitrification and Atmospheric Nitrous Oxide (C. C. Delwiche, ed.), Wiley, New York, pp. 67–84.Google Scholar
  35. Bull, A. T., 1985, Mixed culture and mixed substrate systems, in: Comprehensive Biotechnology (M. Moo-Young, ed.), Vol. 1, The Principles of Biotechnology: Scientific Fundamentals (A. T. Bull and H. Dalton, eds.), Pergamon Press, Oxford, England, pp. 281–299.Google Scholar
  36. Button, D. K., 1985, Kinetics of nutrient-limited transport and microbiol growth, Microbial. Rev. 49:270–297.Google Scholar
  37. Button, D. K., 1991, Biochemical basis for whole-cell uptake kinetics: Specific affinity, oligotrophic capacity, and the meaning of the Michaelis constant, Appl. Environ. Microbiol. 57:2033–2038.PubMedGoogle Scholar
  38. Button, D. K., 1993, Nutrient-limited microbial growth kinetics: Overview and recent advances, Antonie van Leeuwenhoek 63:225–235.PubMedCrossRefGoogle Scholar
  39. Chen, C. Y., and Christensen, E. R., 1985, A unified theory for microbial growth under multiple nutrient limitation, Water Res. 19:791–798.CrossRefGoogle Scholar
  40. Chróst, R. J., 1991, Environmental control of the synthesis and activity of aquatic microbial ecto-enzymes, in: Microbial Enzymes in the Aquatic Environments (R. J. Chróst, ed.), Springer-Verlag, New York, pp. 29–59.CrossRefGoogle Scholar
  41. Cogan, T. M., 1987, Co-metabolism of citrate and glucose by Leuconostoc spp.: Effects on growth, substrate and products, J. Appl. Bacteriol. 63:551–558.CrossRefGoogle Scholar
  42. Cole, J. J., Findlay, S., and Pace, M. L., 1988, Bacterial production in fresh and saltwater ecosystems: A cross-system overview, Mar. Ecol. Prog. Ser. 43:1–10.CrossRefGoogle Scholar
  43. Cook, G. M., Janssen, P. H., and Morgan, H. W., 1993, Simultaneous uptake and utilisation of glucose and xylose by Clostridium thermohydrosulfuricum, FEMS Microbiol. Lett. 109:55–62.CrossRefGoogle Scholar
  44. Cooney, C., Wang, D. C. I., and Mateles, R. I., 1976, Growth of Enterobacter aerogenes in a chemostat with double nutrient limitations, Appl. Environ. Microbiol. 31:91–98.PubMedGoogle Scholar
  45. Coveney, M. F., and Wetzel, R. G., 1992, Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures, Appl. Environ. Microbiol. 58:150–156.PubMedGoogle Scholar
  46. Cronan, Jr., J. E., Gennis, R. B., and Maloy, S. R., 1987, Cytoplasmic membrane, in: Escherichia coli and Salmonella typhimurium, Vol. 1 (F. C. Neidhardt, J. L. Ingraham, K. Brooks, B. Magasanik, M. Schaechter, and H. E. Umbarger, eds.), American Society for Microbiology, Washington, D.C., pp. 31–55.Google Scholar
  47. Currie, D. J., 1990, Large scale variability and interactions among phytoplankton, bacterioplankton and phosphorus, Limnol. Oceanogr. 35:1437–1455.CrossRefGoogle Scholar
  48. Daesch, G., and Mortenson, 1968, Sucrose catabolism in Clostridium pasteuranium and its relation to N2 fixation, J. Bacteriol. 96:346–351.PubMedGoogle Scholar
  49. Daughton, C. G., Cook, A. M., and Alexander, M., 1979, Phosphate and soil binding: Factors limiting bacterial degradation of ionic phosphorus-containing pesticide metabolites, Appl. Environ. Microbiol. 37:175–184.Google Scholar
  50. Davidson, E. A., Matson, R. A., Vitousek, P. M., Riley, R., Dunkin, K., Garcïa-Mendez, G., and Maass, J. M., 1993, Processes regulating soil emission of NO and N2O in a seasonally dry tropical forest, Ecology 74:130–139.CrossRefGoogle Scholar
  51. Dawes, E. A., 1985, Starvation, survival and energy reserves, in: Bacteria in their Natural Environments (M. Fletcher and G. D. Floodgate, eds.), Academic Press, London, pp. 43–79.Google Scholar
  52. Dean, A. C. R., 1972, Influence of environment on the control of enzyme synthesis, J. Appl. Chem. Biotechnol. 22:245–259.CrossRefGoogle Scholar
  53. Death, A., Notley, L., and Ferenci, T., 1993, Derepression of LamB protein facilitates outer membrane permeation of carbohydrates into Escherichia coli under conditions of nutrient stress, J. Bacteriol. 175:1475–1483.PubMedGoogle Scholar
  54. de Boer, L., Euverink, G. J., van der Vlag, J., and Dijkhuizen, L., 1990, Regulation of methanol metabolism in the facultative methylotroph Nocardia sp. 239 during growth on mixed substrate in batch and continuous culture, Arch. Microbiol. 153:33–343.CrossRefGoogle Scholar
  55. Decker, K., Peist, R., Reidl, J., Kossmann, M., Brand, B., and Boos, W., 1993, Maltose and maltotriose can be formed endogenously in Escherichia coli from glucose and glucose 1-phosphate independently of enzymes of the maltose system, J. Bacteriol. 175:5655–5665.PubMedGoogle Scholar
  56. Degnan, B. A., and Macfarlane, G. T., 1993, Transport and metabolism of glucose and arabinose in Bifidobacterium breve, Arch. Microbiol. 160:144–151.PubMedCrossRefGoogle Scholar
  57. de Hollander, J. A., and Stouthamer, A. H., 1979, Multicarbon-substrate growth of Rhizobium trifola, FEMS Microbiol. Lett. 6:57–59.CrossRefGoogle Scholar
  58. de Jong-Gubbels, P., Vanrollehem, P., Heijnen, S., van Dijken, J. P., and Pronk, J. T., 1995, Regulation of carbon metabolism in chemostat cultures of Saccharomyces cerevisiae, Yeast 11:407–418.PubMedCrossRefGoogle Scholar
  59. de Koning, W., Gleeson, M. A. G., Harder, W., and Dijkhuizen, L., 1987, Regulation of methanol metabolism in the yeast Hansenula polymorpha. Isolation and characterization of mutants blocked in methanol assimilatory enzymes, Arch. Microbiol. 147:375–382.CrossRefGoogle Scholar
  60. de Koning, W., Weusthuis, R. A., Harder, W., and Dijkhuizen, L., 1990, Metabolic regulation in the yeast Hansenula polymorpha. Growth of dihydroxyacetone kinase/glycerol kinase-negative mutants on mixtures of methanol and xylose in continuous cultures, Yeast 6:107–115.CrossRefGoogle Scholar
  61. de Vries, G. E., Harms, N., Maurer, K., Papendrecht, A., and Stouthamer, A. H., 1988, Physiological regulation of Paracoccus denitrificans methanol dehydrogenase synthesis and activity, J. Bacteriol. 170:3731–3737.PubMedGoogle Scholar
  62. Dijkhuizen, L., and Harder, W., 1979, Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1: Growth on mixtures of acetate and formate in continuous culture, Arch. Microbiol. 123:47–53.CrossRefGoogle Scholar
  63. Douglas, D. J., Novitsky, J. A., and Fournier, R. O., 1987, Microautoradiography-based enumeration of bacteria with estimates of thymidine-specific growth and production rates, Mar. Ecol. Prog. Ser. 36:91–99.CrossRefGoogle Scholar
  64. Dow, C. S., Whittenbury, R., and Carr, N. G., 1983, The “shut down” or “growth precursor” cell—an adaptation for survival in a potentially hostile environment, in: Microbes in Their Natural Environments (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), Cambridge University Press, Cambridge, England, pp. 187–247.Google Scholar
  65. Duchars, M. G., and Attwood, M. M., 1989, The influence of the carbon:nitrogen ratio of the growth medium on the cellular composition and regulation of enzyme activity in Hyphomicrobium X, J. Gen. Microbiol. 135:787–793.Google Scholar
  66. Ducklow, H. W., and Carlson, C. A., 1992, Oceanic bacterial production, Adv. Microb. Ecol. 12:113–181.CrossRefGoogle Scholar
  67. Dykhuizen, D., and Davies, M., 1980, An experimental model: Bacterial specialists and generalists competing in chemostats, Ecology 61:1213–1227.CrossRefGoogle Scholar
  68. Eggeling, L., and Sahm, H., 1978, Derepression and partial insensitivity to carbon catabolite repression of the methanol-dissimilating enzymes in Hansenula polymorpha, Eur. J. Appl. Microbiol. Biotechnol. 5:197–202.CrossRefGoogle Scholar
  69. Eggeling, L., and Sahm, H., 1981, Enhanced utilization-rate of methanol during growth on mixed substrate: A continuous culture study with Hansenula polymorpha, Arch. Microbiol. 130:362–365.CrossRefGoogle Scholar
  70. Egli, T., 1982, Regulation of protein synthesis in methylotrophic yeasts: Repression of methanol dissimilating enzymes by nitrogen limitation, Arch. Microbiol. 131:95–101.CrossRefGoogle Scholar
  71. Egli, T., 1991, On multiple-nutrient-limited growth of microorganisms, with special reference to carbon and nitrogen substrates, Antonie van Leeuwenhoek 60:225–234.PubMedCrossRefGoogle Scholar
  72. Egli, T., 1992, General strategies in the biodegradation of pollutants, in: Metal Ions in Biological Systems. Degradation of Environmental Pollutants by Microorganisms and Their Metalloenzymes, Vol. 28 (H. Sigel and A. Sigel, eds.), Marcel Dekker, New York, pp. 1–39.Google Scholar
  73. Egli, T., 1994, Biochemistry and physiology of the degradation of nitrilotriacetic acid and other metal complexing agents, in: Biochemistry of Microbial Degradation (C. Ratledge, ed.), Kluwer Academic Publishers, Dordrecht, pp. 179–195.CrossRefGoogle Scholar
  74. Egli, T., and Harder, W., 1984, Growth on methylotrophs on mixed substrates, in: Microbial Growth on C1 Compounds (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, D.C., pp. 330–337.Google Scholar
  75. Egli, T., and Mason, C. A., 1991, Mixed substrates and mixed cultures, in: Biology of Methylotrophs (I. Goldberg and J. S. Rokem, Eds.), Butterworth-Heinemann, Boston, pp. 173–201.Google Scholar
  76. Egli, T., and Quayle, J. R., 1984, Influence of the carbon:nitrogen ratio on the utilization of mixed carbon substrates by the methylotrophic yeast Hansenula polymorpha, in: Proc. 100th Ann. Meeting Soc. Gen. Microbiol. (abstract booklet), Warwick, p. M13.Google Scholar
  77. Egli, T., and Quayle, J. R., 1986, Influence of the carbon:nitrogen ratio of the growth medium on the cellular composition and the ability of the methylotrophic yeast Hansenula polymorpha to utilize mixed carbon sources, J. Gen. Microbiol. 132:1779–1788.Google Scholar
  78. Egli, T., van Dijken, J. P., Veenhuis, M., Harder, W., and Fiechter, A., 1980, Methanol metabolism in yeasts: Regulation of the synthesis of catabolic enzymes, Arch. Microbiol. 124:115–121.CrossRefGoogle Scholar
  79. Egli, T., Käppeli, O., and Fiechter, A., 1982a, Regulatory flexibility of methylotrophic yeasts in chemostat cultures: Simultaneous assimilation of glucose and methanol at a fixed dilution rate, Arch. Microbiol. 131:1–7.CrossRefGoogle Scholar
  80. Egli, T., Käppeli, O., and Fiechter, A., 1982b, Mixed substrate growth of methylotrophic yeasts in chemostat culture: Influence of dilution rate on the utilisation of a mixture of glucose and methanol, Arch. Microbiol. 131:8–13.CrossRefGoogle Scholar
  81. Egli, T., Lindley, N. D., and Quayle, J. R., 1983, Regulation of enzyme synthesis and variation of residual methanol concentration during carbon-limited growth of Kloeckera sp. 2201 on mixtures of methanol and glucose, J. Gen. Microbiol. 129:1269–1281.Google Scholar
  82. Egli, T., Bosshard, C., and Hamer, G., 1986, Simultaneous utilization of methanol-glucose mixtures by Hansenula polymorpha in chemostat: Influence of dilution rate and mixture composition on utilization pattern, Biotechnol. Bioeng. 28:1735–1741.PubMedCrossRefGoogle Scholar
  83. Egli, T., Weilenmann, H.-U., El-Banna, T., and Auling, G., 1988, Gram-negative, aerobic, nitrilotriacetate-utilizing bacteria from wastewater and soil, Syst. Appl. Microbiol. 10:297–305.CrossRefGoogle Scholar
  84. Egli, T., Lendenmann, U., and Snozzi, M., 1993, Kinetics of microbial growth with mixtures of carbon sources, Antonie van Leeuwenhoek 63:289–298.PubMedCrossRefGoogle Scholar
  85. Fenchel, T. M., and Jørgensen, B. B., 1977, Detritus food chains of aquatic ecosystems: The role of bacteria, Adv. Microb. Ecol. 1:1–58.Google Scholar
  86. Fuhrman, J. A., and Azam, F., 1980, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California, Appl. Environ. Microbiol. 39:1085–1095.PubMedGoogle Scholar
  87. Fuhrman, J. A., and Azam, F., 1982, Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results, Mar. Biol. 66:109–120.CrossRefGoogle Scholar
  88. Fuhrman, J. A., and Ferguson, R. L., 1986, Nanomolar concentrations and rapid turnover of dissolved free amino acids in seawater: Agreement between chemical and microbiological measurements, Mar. Ecol. Prog. Ser. 33:237–242.CrossRefGoogle Scholar
  89. Furlong, C. E., 1987, Osmotic-shock-sensitive tranport systems, in: Escherichia coli and Salmonella typhimurium, Vol. 1 (F. C. Neidhardt, J. L. Ingranarci, K. Brooks, B. Magasanik, M. Schaechter, and H. E. Umbarger, eds.), American Society for Microbiology, Washington, D.C., pp. 768–796.Google Scholar
  90. Gerhart, D. W., and Likens, G. E., 1975, Enrichment experiments for determining nutrient limitation: Four methods compared, Limnol. Oceanogr. 20:649–653.CrossRefGoogle Scholar
  91. Geurts, T. G. E., de Kok, H. E., and Roels, J. A., 1980, A quantitative description of the growth of Saccharomyes cerevisiae CBS426 on a mixed substrate of glucose and ethanol, Biotechnol. Bioeng. 22:2031–2043.CrossRefGoogle Scholar
  92. Goldman, J. C., 1980, Physiological processes, nutrient availability and the concept of relative growth rate in marine phytoplankton ecology, in: Primary Productivity in the Sea (P. G. Falkowski, ed.), Plenum Press, New York, pp. 179–194.Google Scholar
  93. Goldman, J. C., Caron, D. A., and Dennett, M. R., 1987, Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio, Limnol. Oceanogr. 32:1239–1252.CrossRefGoogle Scholar
  94. Gommers, P. J. F., van Schie, B. J., van Dijken, J. P., and Kuenen, J. G., 1988, Biochemical limits to microbial growth yields: an analysis of mixed substrate utilization, Biotechnol. Bioeng. 32:86–94.PubMedCrossRefGoogle Scholar
  95. Gondo, S., Kaushik, K., and Venkatasubramanian, K., 1978, Two carbon-substrate continuous culture: Multiple steady states and their stability, Biotechnol. Bioeng. 20:1479–1485.CrossRefGoogle Scholar
  96. Gorini, L., 1960, Antagonism between substrate and repression in controlling the formation of a biosynthetic enzyme, Proc. Nat. Acad. Sci. USA 46:682–690.PubMedCrossRefGoogle Scholar
  97. Gottschal, J. C., 1986, Mixed substrate utilization by mixed cultures, in: Bacteria in Nature (J. S. Poindexter and E. R. Leadbetter, eds.), Plenum Press, New York, pp. 261–292.Google Scholar
  98. Gottschal, J. C., 1993, Growth kinetics and competition—some contemporary comments, Antonie van Leeuwenhoek 63:299–313.PubMedCrossRefGoogle Scholar
  99. Gottschal, J. C., and Kuenen, J. G., 1980a, Mixotrophic growth of Thiobacillus A2 on acetate and thiosulfate as growth limiting substrates in the chemostat, Arch. Microbiol. 126:33–42.CrossRefGoogle Scholar
  100. Gottschal, J. C., and Kuenen, J. G., 1980b. Selective enrichment of facultatively chemolithotrophic thiobacilli and related organisms in continuous culture, FEMS Microbiol. Lett. 7:241–247.CrossRefGoogle Scholar
  101. Gottschal, J. C., de Vries, S. and Kuenen, J. G., 1979, Competition between the facultatively chemolithotrophic Thiobacillus A2, and obligately chemolithotrophic Thiobacillus and a heterotrophic Spirillum for inorganic and organic substrates, Arch. Microbiol. 121:241–249.CrossRefGoogle Scholar
  102. Gottschal, J. C., Pol, A., and Kuenen, J. G., 1981a, Metabolic flexibility of Thiobacillus A2 during substrate transitions in the chemostat, Arch. Microbiol. 129:23–28.CrossRefGoogle Scholar
  103. Gottschal, J. C., Nanninga, H. J., and Kuenen, J. G., 1981b, Growth of Thiobacillus A2 under alternating growth conditions in the chemostat, J. Gen. Microbiol. 126:85–96.Google Scholar
  104. Gräzer-Lampart, S. D., Egli, T., and Hamer, G., 1986, Growth of Hyphomicrobium ZV620 in the chemostat: Regulation of NH4 +-assimilating enzymes and cellular composition, J. Gen. Microbiol. 132:3337–3347.Google Scholar
  105. Haas, C. N., 1994, Unified kinetic treatment for growth on dual nutrients, Biotechnol. Bioeng. 44:154–164.PubMedCrossRefGoogle Scholar
  106. Häggström, M. H., and Cooney, C. L., 1984, α-Glucosidase synthesis in batch and continuous culture of Saccharomyces cerevisiae, Appl. Biochem. Biotechnol. 9:475–481.CrossRefGoogle Scholar
  107. Harder, W., and Dijkhuizen, L., 1976, Mixed substrate utilization, in: Continuous Culture 6. Applications and New Fields (A. C. R. Dean, D. C. Ellwood, C. G. T. Evans, and I. Melling, eds.), Ellis Horwood, Chichester, England, pp. 297–314.Google Scholar
  108. Harder, W., and Dijkhuizen, L., 1982, Strategies of mixed substrate utilization in microorganisms, Phil. Trans. R. Soc. Lond. B. 297:459–480.CrossRefGoogle Scholar
  109. Harder, W., and Dijkhuizen, L., 1983, Physiological responses to nutrient limitation, Annu. Rev. Microbiol. 37:1–23.PubMedCrossRefGoogle Scholar
  110. Harder, W., Dijkhuizen, L., and Veldkamp, H., 1984, Environmental regulation of microbial metabolism, in: The Microbe 1984 (D. P. Kelly and N. G. Carr, eds.), Cambridge University Press, Cambridge, England, pp. 51–95.Google Scholar
  111. Harrison, D. E. F., 1972, Physiological effects of dissolved oxygen tension and redox potential on growing populations of microorganisms, J. Appl. Chem. Biotechnol. 22:417–440.CrossRefGoogle Scholar
  112. Harte, M. J., and Webb, F. C., 1967, Utilization of mixed sugars in continuous fermentation. II, Biotechnol. Bioeng. 9:205–221.CrossRefGoogle Scholar
  113. Harvey, R. J., 1970, Metabolic regulation in glucose-limited chemostat cultures of Escherichia coli, J. Bacteriol. 104:698–706.PubMedGoogle Scholar
  114. Hedges, J. I., 1992, Global biogeochemical carbon cycles: Progress and problems, Mar. Chem. 39:67–93.CrossRefGoogle Scholar
  115. Hegewald, E., and Knorre, W. A., 1978, Kinetics of growth and substrate consumption of Escherichia coli ML30 on two carbon sources, Z. Allg. Mikrobiol. 18:415–426.PubMedCrossRefGoogle Scholar
  116. Hengge-Aronis, R., 1993, The role of rpoS in early stationary-phase gene regulation in Escherichia coli K12, in: Starvation in Bacteria (S. Kjelleberg, ed.), Plenum Press, New York, pp. 171–200.Google Scholar
  117. Herbert, D., 1961a, A theoretical analysis of continuous culture systems, Soc. Chem. Ind. Monogr. (London) 12:21–53.Google Scholar
  118. Herbert, D., 1961b, The chemical composition of micro-organisms as a function of their growth environment, in: Microbial Reaction to the Environment (C. G. Meynell and H. Gooder, eds.), Cambridge University Press, Cambridge, England, pp. 391–416.Google Scholar
  119. Herbert, D., 1976, Stoichiometric aspects of microbial growth, in: Continuous Culture 6: Applications and New Fields (A. C. R. Dean, D. C. Ellwood, C. G. T. Evans, and J. Melling, eds.), Ellis Horwood, Chichester, England, pp. 1–30.Google Scholar
  120. Hillmer, P., and Gest, H., 1977, H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: Production and utilization of H2 by resting cells, J. Bacteriol. 129:732–739.PubMedGoogle Scholar
  121. Hobbie, J. E., and Ford, T. E., 1993, A perspective on the ecology of aquatic microbes, in: Aquatic Microbiology. An Ecological Approach (T. E. Ford, ed.), Blackwell Scientific Publications, Boston, Oxford, pp. 1–14.Google Scholar
  122. Höfle, M. G., 1983, Long-term changes in chemostat cultures of Cytophaga johnsonae, Appl. Environ. Microbiol. 46:1045–1053.PubMedGoogle Scholar
  123. Hollibaugh, J. T., and Azam, F. 1983, Microbial degradation of dissolved proteins in seawater, Limnol. Oceanogr. 28:1104–1116.CrossRefGoogle Scholar
  124. Hoover, T. R., and Ludden, P. W., 1984, Derepression of nitrogenase by addition of malate to cultures of Rhodospirillum rubrum grown with glutamate as the carbon and nitrogen source, J. Bacteriol. 159:400–403.PubMedGoogle Scholar
  125. Hoppe, H.-G., 1976, Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of micro-autoradiography, Mar. Biol. 36:291–302.CrossRefGoogle Scholar
  126. Hoppe, H.-G., 1991, Microbial extracellular enzyme activity: A new key parameter in aquatic ecology, in: Microbial Enzymes in the Aquatic Environments (R. J. Chróst, ed.), Springer-Verlag, New York, pp. 60–83.CrossRefGoogle Scholar
  127. Hoppe, H.-G., Kim S.-J., and Gocke, K., 1988, Microbial decomposition in aquatic environments: Combined process of extracellular enzyme activity and substrate uptake, Appl. Environ. Microbiol. 54:784–790.PubMedGoogle Scholar
  128. Horowitz, A., Krichevsky, M. I., and Atlas, R. M., 1983, Characteristics and diversity of subarctic marine oligotrophic stenoheterotrophic and euryheterotrophic bacterial populations, Can. J. Microbiol. 29:527–535.CrossRefGoogle Scholar
  129. Howard, P. H., 1989, Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Vol. I, Large Production and Priority Pollutants, Lewis Publishers, Chelsea, Mich.Google Scholar
  130. Hueting, S., and Tempest, D. W., 1979, Influence of the glucose input concentration on the kinetics of metabolite production by Klebsiella aerogenes NCTC418: Growing in chemostat culture in potassium-or ammonia-limited environments, Arch. Microbiol. 123:189–199.PubMedCrossRefGoogle Scholar
  131. Hutchinson, D. H., and Robinson, C. W., 1988, Kinetics of the simultaneous batch degradation of p-cresol and phenol by Pseudomonas putida, Appl. Microbiol. Biotechnol. 29:599–604.CrossRefGoogle Scholar
  132. Jacob, F., and Monod, J., 1961, Genetic regulatory mechanisms in the synthesis of proteins, J. Molec. Biol. 3:318–356.PubMedCrossRefGoogle Scholar
  133. Jackson, G. A., 1987, Physical and chemical properties of aquatic environments, in: Ecology of Microbial Communities (M. Fletcher, T. R. G. Gray, and J. G. Jones, eds.), Cambridge University Press, Cambridge, England, pp. 213–233.Google Scholar
  134. Jannasch, H. W., 1967, Growth of marine bacteria at limiting concentrations of organic carbon in seawater, Limnol. Oceanogr. 12:264–271.CrossRefGoogle Scholar
  135. Jannasch, H. W., 1968, Growth characteristics of heterotrophic bacteria in seawater, J. Bacteriol. 95:722–723.PubMedGoogle Scholar
  136. Jannasch, H. W., and Egli, T., 1993, Microbial growth kinetics: A historical perspective, Antonie van Leeuwenhoek 63:213–224.PubMedCrossRefGoogle Scholar
  137. Kaplan, L. A., and Newbold, J. D., 1993, Biogeochemistry of dissolved organic carbon entering streams, in: Aquatic Microbiology. An Ecological Approach (T. E. Ford, ed.), Blackwell Scientific Publications, Boston, Oxford, pp. 139–165.Google Scholar
  138. Kaprelyants, A. S., Gottschal, J. C., and Kell, D. B., 1993, Dormancy in non-sporulating bacteria, FEMS Microbiol. Lett. 104:271–286.CrossRefGoogle Scholar
  139. Karl, D. M., 1986, Determination of in situ microbial biomass, viability, metabolism and growth, in: Bacteria in Nature, Vol. 2 (J. S. Poindexter and E. R. Leadbetter, eds.), Plenum Press, New York, pp. 85–176.Google Scholar
  140. Karl, D. M., and Bailiff, M. D., 1989, The measurement and distribution of dissolved nucleic acids in aquatic environments, Limnol. Oceanogr. 34:543–558.CrossRefGoogle Scholar
  141. Kastner, J. R., and Roberts, R. S., 1990, Simultaneous fermentation of D-xylose and glucose by Candida shehatae, Biotechnol. Lett. 12:57–60.CrossRefGoogle Scholar
  142. Kay, A. A., and Gronlund, A. F., 1969, Influence of carbon or nitrogen starvation on amino acid transport in Pseudomonas aeruginosa, J. Bacteriol. 100:276–282.PubMedGoogle Scholar
  143. Keil, R. G., Montluçon, D. B., Prahl, F. G., and Hedges, J. I., 1994, Sorptive preservation of labile organic matter in marine sediments, Nature 370:549–552.CrossRefGoogle Scholar
  144. Kell, D. B., and Westerhoff, H. V., 1986, Metabolic control theory: Its role in microbiology and biotechnology, FEMS Microbiol. Rev. 39:305–320.CrossRefGoogle Scholar
  145. Kirchman, D. L., 1990, Limitation of bacterial growth by dissolved organic matter in the subarctic Pacific, Mar. Ecol. Prog. Ser. 62:47–54.CrossRefGoogle Scholar
  146. Kirchman, D. L., 1993, Particulate detritus and bacteria in marine environments, in: Aquatic Microbiology, An Ecological Approach (T. E. Ford, ed.), Blackwell Scientific Publications, Boston, Oxford, pp. 1–14.Google Scholar
  147. Kjelleberg, S. (ed.), 1993, Starvation in Bacteria, Plenum Press, New York.Google Scholar
  148. Kjelleberg, S., Hermansson, M., Mårdén, P., and Jones, G. W., 1987, The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment, Annu. Rev. Microbiol. 41:25–49.PubMedCrossRefGoogle Scholar
  149. Kjelleberg, S., Albertson, N., Flärdh, K., Holmquist, L., Jouper-Jaan, Å., Marouga, R., Östling, J., Svenblad, B., and Weichart, D., 1993, How do non-differentiating bacteria adapt to starvation? Antonie van Leeuwenhoek 63:333–341.PubMedCrossRefGoogle Scholar
  150. Kluyver, A. J., 1956, Life’s flexibility: Microbial adaptation, in: The Microbe’s Contribution to Biology (A. J. Kluyver and C. B van Niel, eds.), Harvard University Press, Cambridge, Mass., p. 93.Google Scholar
  151. Koch, A. L., 1976, How bacteria face depression, recession and derepression, Persp. Biol. Med. 20:44–63.Google Scholar
  152. Koch, A. L., 1982, Multistep kinetics: Choice of models for the growth of bacteria, J. Theor. Biol. 98:401–417.PubMedCrossRefGoogle Scholar
  153. Koch, A. L., and Wang, C. H., 1982, How close to the theoretical diffusion limit do bacterial uptake systems function, Arch. Microbiol. 131:36–42.PubMedCrossRefGoogle Scholar
  154. Koike, I., Hara, S., Terauchi, K., and Kogure, K., 1990, Role of sub-micrometer particles in the ocean, Nature 345:242–244.CrossRefGoogle Scholar
  155. Kompala, D. S., Ramakrishna, D., and Tsao, G. T., 1984, Cybernetic modeling of microbial growth on multiple substrates, Biotechnol. Bioeng. 26:1272–1281.PubMedCrossRefGoogle Scholar
  156. Konopka, A., Knight, D., and Turco, R. F., 1989, Characterization of a Pseudomonas sp. capable of aniline degradation in the presence of secondary carbon sources, Appl. Environ. Microbiol. 55:385–389.PubMedGoogle Scholar
  157. Kurlandzka, A., Rosenzweig, R. F., and Adams, J., 1991, Identification of adaptive changes in an evolving population of Escherichia coli: The role of changes with regulatory and highly pleiotrophic effects, Mol. Biol. Evol. 8:261–281.PubMedGoogle Scholar
  158. Kysliková, E., and Volfová, O., 1990, Simultaneous utilization of methanol and mannose in a chemostat culture of Candida boidinii 2, Folia Microbiol. (Praha) 35:484.Google Scholar
  159. Lancelot, C., and Billen, G., 1985, Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems, Adv. Aquat. Microbiol. 3:263–321.Google Scholar
  160. Lancelot, C., Billen, G., and Mathot, S., 1989, Ecophysiology of phyto-and bacterioplankton growth in the Southern Ocean, in: Plankton Ecology, Vol. 1 (S. Caschetto, ed.), Science Policy Office, Brussels, pp. 4–92.Google Scholar
  161. LaPat-Polasko, L. T., McCarty, T. L., and Zehnder, A. J. B., 1984, Secondary substrate utilization of methylene chloride by an isolated strain of Pseudomonas sp., Appl. Environ. Microbiol. 47:825–830.PubMedGoogle Scholar
  162. Law, A. T., and Button, D. K., 1977, Multiple-carbon-source-limited growth kinetics of a marine coryneform bacterium, J. Bacteriol. 129:115–123.PubMedGoogle Scholar
  163. Lawford, H. G., Pik, J. R., Lawford, G. R., Williams T., and Kligerman, A., 1980, Physiology of Candida albicans in zinc-limited chemostats, Can. J. Microbiol. 26:64–70.PubMedCrossRefGoogle Scholar
  164. Lee, A. L., Ataai, M. M., and Shuler, M. L., 1984, Double-substrate-limited growth of Escherichia coli, Biotechnol. Bioeng. 26:1398–1401.PubMedCrossRefGoogle Scholar
  165. Lee, C., and Wakeham, S. G., 1992, Organic matter in the water column: Future research challenges, Mar. Chem. 39:95–118.CrossRefGoogle Scholar
  166. Lendenmann, U., 1994, Growth Kinetics of Escherichia coli with Mixtures of Sugars, No. 10658, Swiss Federal Institute of Technology Zürich, Switzerland, Ph.D. thesis.Google Scholar
  167. Lendenmann, U., and Egli, T., 1995, Is Escherichia coli growing in glucose-limited chemostat culture able to utilise other sugars without lag? Microbiology 141:71–78.PubMedCrossRefGoogle Scholar
  168. Lendenmann, U., Snozzi, M., and Egli, T., 1992, Simultaneous utilization of diauxic sugar mixtures by Escherichia coli, in: 6th Intern. Symp. Microb. Ecol. Abstracts (abstract booklet), p. 254, Barcelona, Spain.Google Scholar
  169. Lengeler, J. W., 1993, Carbohydrate transport in bacteria under environmental conditions, a black box? Antonie van Leeuwenhoek 63:275–288.PubMedCrossRefGoogle Scholar
  170. León, J. A., and Tumpson, D. B., 1975, Competition between two species for two complementary or substitutable resources, J. Theor. Biol. 50:185–201.PubMedCrossRefGoogle Scholar
  171. Levering, P. R., and Dijkhuizen, L., 1985, Regulation of methylotrophic and heterotrophic metabolism in Arthrobacter P1. Growth with mixtures of methylamine and acetate in batch and continous cultures, Arch. Microbiol. 142:113–120.CrossRefGoogle Scholar
  172. Lewin, B., 1994, Genes V, Oxford University Press, Oxford, England.Google Scholar
  173. Lin, E. C. C., 1987, Dissimilatory pathways for sugars, polyols, and carboxylates, in: Escherichia coli and Salmonella typhimurium, Vol. 1 (F. C. Neidhardt, J. L. Ingraham, K. Brooks, B. Magasanik, M. Schaechter, and H. E. Umbarger, eds.), American Society for Microbiology, Washington, D.C., pp. 244–284.Google Scholar
  174. Linton, J. D., and Stephenson, R. J., 1978, A preliminary study on growth-yields in relation to the carbon and energy-content of various organic growth substrates, FEMS Microbiol. Lett. 3:95–98.CrossRefGoogle Scholar
  175. Linton, J. D., Griffiths, K., and Gregory, M., 1981, The effect of mixtures of glutamate and formate on the yield and respiration of a chemostat culture of Beneckea natriegens, Arch. Microbiol. 129:119–122.CrossRefGoogle Scholar
  176. Loubière, P., Salou, P., Leroy, M. J., Lindley, N. D., and Parreilleux, A., 1992a, Electrogenic malate uptake and improved growth energetics of the malolactic bacterium Leuconostoc oenos grown on glucose-malate mixtures, J. Bacteriol. 174:5302–5308.PubMedGoogle Scholar
  177. Loubière, P., Gros, E., Paquet, V., and Lindley, N. D., 1992b, Kinetics and physiological implications of the growth behavior of Eubacterium limosum on glucose/methanol mixtures, J. Gen. Microbiol. 138:979–985.Google Scholar
  178. Lowe, W. E., Theodorou, M. K., and Trinci, A. P. J., 1987, Growth and fermentation of an anaerobic rumen fungus on various carbon sources and effect of temperature on development, Appl. Environ. Microbiol. 53:1210–1215.PubMedGoogle Scholar
  179. Lütgens, M., and Gottschalk, G., 1980, Why a co-substrate is required for growth of Escherichia coli on citrate, J. Gen. Microbiol. 119:63–70.PubMedGoogle Scholar
  180. Magasanik, B., 1976, Classical and postclassical modes of regulation of the synthesis of degradative bacterial enzymes, Prog. Nucl. Acids Res. Molec. Biol. 17:99–115.CrossRefGoogle Scholar
  181. Mankad, T., and Bungay, H. R., 1988, Models for microbial growth with more than one limiting nutrient, J. Biotechnol. 7:161–166.CrossRefGoogle Scholar
  182. Mann, K. H., 1988, Production and use of detritus in various freshwater, estuarine, and costal marine ecosystems, Limnol. Oceanogr. 33:910–930.CrossRefGoogle Scholar
  183. Mårdén, P., Nyström, T., and Kjelleberg, S., 1987, Uptake of leucine by a marine gram-negative heterotrophic bacterium exposed to starvation conditions, FEMS Microbiol. Ecol. 45:233–241.CrossRefGoogle Scholar
  184. Marounek, M., and Kopecný, J., 1994, Utilization of glucose and xylose in ruminai strains of Butyrivibrio fibrisolvens, Appl. Environ. Microbiol. 60:738–739.PubMedGoogle Scholar
  185. Martin, P., and MacLeod, R. A., 1984, Observations on the distinction between oligotrophic and eutrophic marine bacteria, Appl. Environ. Microbiol. 47:1017–1022.PubMedGoogle Scholar
  186. Martinez, J., and Azam, F., 1993, Perplasmic aminopeptidase and alkaline phosphatase activities in a marine bacterium: Implications for substrate processing in the sea, Mar Ecol. Prog. Ser. 92:89–97.CrossRefGoogle Scholar
  187. Mason, C. A., and Egli, T., 1993, Dynamics of microbial growth in the decelerating and stationary phase of batch culture, in: Starvation in Bacteria (S. Kjelleberg, ed.), Plenum Press, New York, pp. 81–102.Google Scholar
  188. Mateles, R. I., Chian, S. K., and Silver, R., 1967, Continuous culture on mixed substrates, in: Microbial Physiology and Continuous Culture (E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), H. M. S. O., London, pp. 232–239.Google Scholar
  189. Matin, A., 1979, Microbial regulatory mechanisms at low nutrient concentrations as studied in chemostat, in: Strategies of Microbial Life in Extreme Environments (Berlin: Dahlem Konferenzen, M. Shilo, ed.), Verlag Chemie, Weinheim, pp. 323–339.Google Scholar
  190. Matin, A., 1991, The molecular basis of carbon-starvation-induced general resistance in Escherichia coli, Molec. Microbiol. 5:3–10.CrossRefGoogle Scholar
  191. Megee, R. D., Drake, J. F., Fredrickson, A. G., and Tsuchiya, H. M., 1972, Studies in inter-microbial symbiosis, Saccharomyces cerevisiae and Lactobacillus casei, Can. J. Microbiol. 18:1733–1742.PubMedCrossRefGoogle Scholar
  192. Meijers, A. P., and van der Leer, R. Chr., 1976, The occurrence of organic micropollutants in the River Rhine and the River Maas in 1974, Water Res. 10:597–604.CrossRefGoogle Scholar
  193. Meyer-Reil, L. A., 1978, Autoradiography and epifluorescence microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters, Appl. Environ. Microbiol. 36:506–512.PubMedGoogle Scholar
  194. Mills, A. L., and Bell, P. E., 1986, Determination of individual organisms and their activities in situ, in: Microbial Autecology (R. L. Tate III, ed.), Wiley, New York, pp. 27–60.Google Scholar
  195. Minkevich, I. G., Krynitskaya, A. Y., and Eroshin, V. K., 1988, A double substrate limitation zone of continuous microbial growth, in: Continuous Culture (P. Kyslik, E. A. Dawes, V. Krumphanzl, and M. Novak, eds.), Academic Press, London, pp. 171–189.Google Scholar
  196. Molin, G., 1985, Mixed carbon source utilization of meat-spoiling Pseudomonas fragi 72 in relation to oxygen limitation and carbon dioxide inhibition, Appl. Environ. Mirobiol. 49:1442–1447.Google Scholar
  197. Monod, J., 1942, Recherches sur la Croissance des Cultures Bactériennes, Hermann and Cie, Paris.Google Scholar
  198. Monod, J., 1950, La technique de culture continue; Théorie et application, Ann. Inst. Pasteur 79:390–410.Google Scholar
  199. Moriarty, D. J. W., 1986, Measurement of bacterial growth rates in aquatic systems from rates of nucleic acid synthesis, Adv. Microb. Ecol. 9:245–292.Google Scholar
  200. Moriarty, D. J. W., and Bell, R. T., 1993, Bacterial growth and starvation in aquatic environments, in: Starvation in Bacteria (S. Kjelleberg, ed.), Plenum Press, New York, pp. 25–33.Google Scholar
  201. Morita, R. Y., 1985, Starvation and miniaturisation of heterotrophs, with special emphasis on maintenance of the starved viable state, in: Bacteria in Their Natural Environments (M. Fletcher and G. D. Floodgate, eds.), Academic Press, London, pp. 111–130.Google Scholar
  202. Morita, R. Y., 1988, Bioavailability of energy and its relationship to growth and starvation survival in nature, J. Can. Microbiol. 43:436–441.CrossRefGoogle Scholar
  203. Morita, R. Y., 1993, Bioavailability of energy and the starvation state, in: Starvation in Bacteria (S. Kjelleberg, ed.), Plenum Press, New York, pp. 1–23.Google Scholar
  204. Morita, R. Y., and Moyer, C. L., 1989, Bioavailability of energy and the starvation state, in: Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida, eds.), Japan Scientific Societies Press, Tokyo, pp. 75–79.Google Scholar
  205. Morris, D. R., and Lewis, Jr., W. M., 1992, Nutrient limitation of bacterioplankton growth in Lake Dillon, Colorado, Limnol. Oceanogr. 37:1179–1192.CrossRefGoogle Scholar
  206. Müller, R. H., and Babel, W., 1986, Glucose as an energy donor in acetate growing Acinetobacter calcoaceticus, Arch. Microbiol. 144:62–66.CrossRefGoogle Scholar
  207. Munson, T. O., and Burris, R. H., 1969, Nitrogen fixation by Rhodospirillum rubrum grown in nitrogen-limited chemostat culture, J. Bacteriol. 97:1093–1098.PubMedGoogle Scholar
  208. Münster, U., 1991, Extracellular enzyme activity in eutrophic and polyhumic lakes, in: Microbial Enzymes in the Aquatic Environments (R. J. Chróst, ed.), Springer-Verlag, New York, pp. 95–121.Google Scholar
  209. Münster, U., 1993, Concentrations and fluxes of organic carbon substrates in the aquatic environment, Antonie van Leeuwenhoek 63:243–264.PubMedCrossRefGoogle Scholar
  210. Münster, U., and Chróst, R. J., 1990, Origin, composition, and microbial utilization of dissolved organic matter, in: Aquatic Microbial Ecology, Biochemical and Molecular Approaches (J. Overbeck and R. J. Chróst, eds.), Springer, New York, pp. 8–46.Google Scholar
  211. Namkung, E., and Rittman, B. E., 1987a, Modeling bisubstrate removal by biofilms, Biotechnol. Bioeng. 29:269–278.PubMedCrossRefGoogle Scholar
  212. Namkung, E., and Rittman, B. E., 1987b, Evaluation of bisubstrate secondary utilization kinetics by biofilms, Biotechnol. Bioeng. 29:335–342.PubMedCrossRefGoogle Scholar
  213. Nedwell, D. B., and Gray, T. R. G., 1987, Soils and sediments as matrices for microbial growth, in: Ecology of Microbial Communities (M. Fletcher, T. R. G. Gray, and J. G. Jones, eds.), Cambridge University Press, Cambridge, England, pp. 21–54.Google Scholar
  214. Neidhardt, F. C., Ingraham, J. L., and Schaechter, M., 1990, Physiology of the Bacterial Cell, A Molecular Approach, Sinauer, Sunderland, Mass.Google Scholar
  215. Ng, F. M.-W., and Dawes, E. A., 1973, Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeruginosa by citrate, Biochem. J. 132:129–140.PubMedGoogle Scholar
  216. Nissen, H., Nissen, P., and Azam, F., 1984, Multiphasic uptake of D-glucose by an oligotrophic marine bacterium, Mar. Ecol. Prog. Ser. 16:155–160.CrossRefGoogle Scholar
  217. Novitsky, J. A., and Morita, R. Y., 1978, Possible strategy for the survival of marine bacteria under starvation conditions, Marine Biol. 48:289–295.CrossRefGoogle Scholar
  218. Nyström, T., 1993, Global systems approach to the physiology of the starved cell, in: Starvation in Bacteria (S. Kjelleberg, ed.), Plenum Press, New York, pp. 129–150.Google Scholar
  219. Östling, J., Holmquist, L., Flärdh, K., Svenblad, B., Jouper-Jaan, Å., and Kjelleberg, S., 1993, Starvation and recovery of Vibrio, in: Starvation in Bacteria (S. Kjelleberg, ed.), Plenum Press, New York, pp. 103–127.Google Scholar
  220. Owens, J. D., and Legan, J. D., 1987, Determination of the Monod substrate saturation constant for microbial growth, FEMS Microbiol. Rev. 46:419–432.CrossRefGoogle Scholar
  221. Paerl, H. W., 1982, Factors limiting productivity of freshwater ecosystems, Adv. Microb. Ecol. 6:75–110.CrossRefGoogle Scholar
  222. Paerl, H. W., 1993, Interaction of nitrogen and carbon cycles in the marine environment, in: Aquatic Microbiology. An Ecological Approach (T. E. Ford, ed.), Blackwell Scientific Publications, Boston, Oxford, pp. 343–381.Google Scholar
  223. Pakulski, J. D., and Benner, R., 1992, An improved method for hydrolysis and MBTH analysis of dissolved and particulate carbohydrates in seawater, Mar. Chem. 40:143–160.CrossRefGoogle Scholar
  224. Panikov, N., 1979, Steady-state growth kinetics of Chlorella vulgaris under double substrate (urea and phosphate) limitation, J. Chem. Tech. Biotechnol. 29:442–450.Google Scholar
  225. Paul, E. A., and Clark, F. E., 1989, Soil Microbiology and Biochemistry, Academic Press, New York.Google Scholar
  226. Paul, E. A., and Voroney, R. P., 1980, Nutrient and energy flows through soil microbial biomass, in: Contemporary Microbial Ecology (D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), Academic Press, London, pp. 215–237.Google Scholar
  227. Paul, J. H., 1993, The advances and limitations of methodology, in: Aquatic Microbiology. An Ecological Approach (T. E. Ford, ed.), Blackwell Scientific Publications, Boston, Oxford, pp. 15–46.Google Scholar
  228. Pedersen, S., Bloch, P. L., Reeh, S., and Neidhardt, F. C., 1978, Patterns of protein synthesis in Escherichia coli: A catalog of the amount of 140 individual proteins at different growth rates, Cell 14:179–190.PubMedCrossRefGoogle Scholar
  229. Pengerud, B., Skjoldal, E., and Thingstad, F., 1987, The reciprocal interaction between degradation of glucose and ecosystem structure. Studies in mixed chemostat cultures of marine bacteria, algae, and bacteriovorous nanoflagellates, Mar. Ecol. Prog. Ser. 35:111–117.CrossRefGoogle Scholar
  230. Pfennig, N., and Jannasch, H., 1962, Biologische Grundfragen bei der homokontinuierlichen Kultur von Mikroorganismen, Ergebnisse der Biologie 25:93–135.PubMedCrossRefGoogle Scholar
  231. Pineault, G., Pruden, B. B., and Loutfi, H., 1977, The effects of mixing, temperature, and nutrient concentration on the fermentation of a mixed sugar solution simulating the hexose content of waste sulfite liquor, Can. J. Chem. Eng. 55:333–340.CrossRefGoogle Scholar
  232. Pirt, 1975, Principles of Microbe and Cell Cultivation, Blackwell, London.Google Scholar
  233. Pöhland, D., Ringpfeil, M., and Behrens, U., 1966, Die Assimilation von Glucose, Xylose und Essigsäure durch Candida utilis, Z. Allg. Mikrobiol. 6:387–395.PubMedCrossRefGoogle Scholar
  234. Poindexter, J. S., 1987, Bacterial responses to nutrient limitation, in: Ecology of Microbial Communities (M. Fletcher, T. R. G. Gray, and J. G. Jones, eds.), Cambridge University Press, Cambridge, England, pp. 283–317.Google Scholar
  235. Postma, P. W., 1986, Catabolite repression and related processes, in: Regulation of Gene Expression-25 Years On (I. R. Booth and C. F. Higgins, eds.), Cambridge University Press, Cambridge, England, pp. 21–49.Google Scholar
  236. Powell, E. O., 1967, The growth rate of micro-örganisms as a function of substrate concentration, in: Microbial Physiology and Continuous Culture (P. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), H. M. S. O., London, pp. 34–56.Google Scholar
  237. Pronk, J. T., van der Linden-Beuman, A., Verduyn, C., Scheffers, A. W., and van Dijken, J. P., 1994, Propionate metabolism in Saccharomyces cerevisiae: Implications for the metabolon hypothesis, Microbiology 140:717–722.PubMedCrossRefGoogle Scholar
  238. Rahmanian, M., and Oxender, D. L., 1972, Depressed leucine transport activity in Escherichia coli, J. Supramolec. Struct. 1:55–59.CrossRefGoogle Scholar
  239. Reber, H. H., and Kaiser, R., 1981, Regulation of the utilization of glucose and aromatic substrates in four strains of Pseudomonas putida, Arch. Microbiol. 130:243–247.CrossRefGoogle Scholar
  240. Rhee, G.-Y., 1978, Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake, Limnol. Oceanogr. 23:10–25.CrossRefGoogle Scholar
  241. Rittenberg, S. C., 1969, The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria, Adv. Microb. Physiol. 3:151–196.Google Scholar
  242. Robertson, L. A., and Kuenen, J. G., 1984, Aerobic denitrification, a controversy revived, Arch. Microbiol. 139:351–354.CrossRefGoogle Scholar
  243. Robertson, L. A., and Kuenen, J. G., 1990, Mixed terminal electron acceptors (oxygen and nitrate), in: Mixed and Multiple Substrates and Feedstocks (G. Hamer, T. Egli, and M. Snozzi, eds.), Hartung-Gorre, Konstanz, pp. 97–106.Google Scholar
  244. Rogers, A. H., and Reynolds, E. C., 1990, The utilization of casein and amino acids by Streptococcus sanguis P4A7 in continuous culture, J. Gen. Microbiol. 136:2535–2550.Google Scholar
  245. Rogers, H. J., 1961, The dissimilation of high molecular weight organic substrates, in: The Bacteria, Vol. 2 (I. C. Gunsalus and R. Y. Stanier, eds.), Academic Press, New York, pp. 261–318.Google Scholar
  246. Rubin, H. E., Subba-Rao, R. V., and Alexander, M., 1982, Rates of mineralization of trace concentrations of aromatic compounds in lake water and sewage samples, Appl. Environ. Microbiol. 43:1133–1138.PubMedGoogle Scholar
  247. Russel, J. B., and Baldwin, R. L., 1978, Substrate preferences in rumen, bacterial evidence of catabolite regulatory mechanisms, Appl. Environ. Microbiol. 36:319–329.Google Scholar
  248. Rutgers, M., Teixeira de Mattos, M. J., Postma, P. W., and van Dam, K., 1987, Establishment of the steady state in glucose-limited chemostat cultures of Klebsiella pneumoniae, J. Gen. Microbiol. 133:445–453.PubMedGoogle Scholar
  249. Rutgers, M., Balk, T. A., and van Dam, K., 1990, Quantification of multiple-substrate controlled growth: Simultaneous ammonium and glucose limitation in chemostat cultures of Klebsiella pneumoniae, Arch. Microbiol. 153:478–484.PubMedCrossRefGoogle Scholar
  250. Rutgers, M., van Dam, K., and Westerhoff, H. V., 1991, Control and thermodynamics of microbial growth: Rational tools for bioengineering, CRC Crit. Rev. Biotechnol. 11:367–395.CrossRefGoogle Scholar
  251. Sahm, H., and Wagner, F., 1973, Mikrobielle Verwertung von Methanol. Eigenschaften der Formal-dehyddehydrogenase und Formiatdehydrogenase aus Candida boidinii, Arch. Mikrobiol. 90:263–268.PubMedCrossRefGoogle Scholar
  252. Saier, Jr., M. H., 1989, Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by bacterial phosphoenolpyruvate: sugar phosphotransferase system, Microbiol. Rev. 53:109–120.PubMedGoogle Scholar
  253. Sakai, Y., Sawai, T., and Tani, Y., 1987, Isolation and characterization of a catabolite repression-insensitive mutant of a methanol yeast Candida boidinii A5 producing alcohol oxidase in glucose-containing medium, Appl. Environ. Microbiol. 53:1812–1818.PubMedGoogle Scholar
  254. Salou, P., Leroy, M. J., Goma, G., and Pareilleux, A., 1991, Influence of pH and malate-glucose ratio on the growth kinetics of Leuconostoc oenos, Appl. Microbiol. Biotechnol. 36:87–91.CrossRefGoogle Scholar
  255. Salou, P., Loubière, P. and Pareilleux, A., 1994, Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose, Appl. Environ. Microbiol. 60:1459–1466.PubMedGoogle Scholar
  256. Schmidt, S. K., and Alexander, M., 1985, Effects of dissolved organic carbon and second substrates on the biodegradation of organic compounds at low concentrations, Appl. Environ. Microbiol. 49:822–827.PubMedGoogle Scholar
  257. Schmidt, S. K., Alexander, M., and Schuler, M. L., 1985, Predicting threshold concentrations of organic substrates for bacterial growth, J. Theor. Biol. 114:1–8.CrossRefGoogle Scholar
  258. Schmitt, P., and Divies, C., 1991, Co-metabolism of citrate and lactose by Leuconostoc mesenteroides subsp. cremoris, J. Ferment. Bioeng. 71:72–74.CrossRefGoogle Scholar
  259. Schowanek, D., and Verstraete, W., 1990, Phosphonate utilization by bacteria in the presence of alternative phosphorus sources, Biodegradation 1:43–53.PubMedCrossRefGoogle Scholar
  260. Schut, F., de Vries, E. J., Gottschal, J. C. Robertson, B. R., Harder, W., Prins, R. A., and Button, D., 1993, Isolation of typical marine bacteria by dilution culture: Growth, maintenance, and characteristics of isolates under laboratory conditions, Appl. Environ. Microbiol. 59:2150–2160.PubMedGoogle Scholar
  261. Schut, F., Jansen, M., Pedro Gomes, T. M., Gottschal, J. C., Harder, W., and Prins, R. A., 1995, Substrate uptake and utilization by a marine ultramicrobacterium, Microbiology 141:351–361.PubMedCrossRefGoogle Scholar
  262. Schweitzer, B., and Simon, M., 1995, Growth limitation of planktonic bacteria in a large mesotrophic lake, Microb. Ecol. 30:89–104.CrossRefGoogle Scholar
  263. Senn, H., 1989, Kinetik und Regulation des Zuckerabbaus von Escherichia coli ML 30 bei tiefen Zuckerkonzentrationen, Swiss Federal Institute of Technology, Zürich, Switzerland, Ph.D. thesis No. 8831.Google Scholar
  264. Senn, H., Lendenmann, U., Snozzi, M., Hamer, G., and Egli, T., 1994, The growth of Escherichia coli in glucose-limited chemostat culture: A re-examination of the kinetics, Biochim. Biophys. Acta 1201:424–436.PubMedCrossRefGoogle Scholar
  265. Sepers, A. B. J., 1984, The uptake capacity for organic compounds of two heterotrophic bacterial strains at carbon-limited growth, Z. Allg. Mikrobiol. 24:261–267.CrossRefGoogle Scholar
  266. Shehata, T. E., and Marr, A. G., 1971, Effect of nutrient concentration on the growth of Escherichia coli, J. Bacteriol. 107:210–216.PubMedGoogle Scholar
  267. Siegele, D., Almirón, M., and Kolter, R., 1993, Approaches to the study of survival and death in stationary-phase Escherichia coli, in: Starvation in Bacteria (S. Kjelleberg, ed.), Plenum Press, New York, pp. 151–169.Google Scholar
  268. Silver, R. S., and Mateles, R. I., 1969, Control of mixed-substrate utilization in continuous culture of Escherichia coli, J. Bacteriol. 97:535–543.PubMedGoogle Scholar
  269. Simkins, S., and Alexander, M., 1984, Models for mineralization kinetics with the variables of substrate concentration and population density, Appl. Environ. Microbiol. 47:1299–1306.PubMedGoogle Scholar
  270. Sinclair, C. G., and Ryder, D. N., 1975, Models for the continuous culture of microorganisms under both oxygen and carbon limiting conditions, Biotechnol. Bioeng. 17:375–398.CrossRefGoogle Scholar
  271. Slaff, G. F., and Humphrey, A. E., 1986, The growth of Clostridium thermohydrosulfuricum on multiple substrates, Chem. Eng. Commun. 45:33–51.CrossRefGoogle Scholar
  272. Smith, A. L., and Kelly, D. P., 1979, Competition in the chemostat between an obligately and a facultatively chemolithotrophic Thiobacillus, J. Gen. Microbiol. 115:377–384.Google Scholar
  273. Smith, V. H., 1993, Implication of resource-ratio theory for microbial ecology, Adv. Microb. Ecol. 13:1–37.CrossRefGoogle Scholar
  274. Sonenshein, A. L., 1989, Metabolic regulation of sporulation and other stationary-phase phenomena, in: Regulation of Prokaryotic Development (I. Smith, A. Slepecky, and P. Setlow, eds.), American Society for Microbiology, Washington, D.C., pp. 109–130.Google Scholar
  275. Standing, C. N., Fredrickson, A. G., and Tsuchiya, H. M., 1972, Batch and continuous culture transients for two substrate systems, Appl. Microbiol. 23:354–359.PubMedGoogle Scholar
  276. Stephenson, M., 1949, Growth and nutrition, in: Bacterial Metabolism, 3rd ed., Longmans, Green and Co., London, pp. 159–178.Google Scholar
  277. Stevenson, L. H., 1978, A case for bacterial dormancy in aquatic systems, Microb. Ecol. 4:127–133.CrossRefGoogle Scholar
  278. Stolz, P., Böcker, G., Vogel, R. F., and Hammes, W. P., 1993, Utilisation of maltose and glucose by lactobacilli isolated from sourdough, FEMS Microbiol. Lett. 109:237–242.CrossRefGoogle Scholar
  279. Subba-Rao, R. V., Rubin, H. E., and Alexander, M., 1982, Kinetics and extent of mineralization of organic chemicals at trace levels in freshwater and sewage, Appl. Environ. Microbiol. 43:1139–1150.PubMedGoogle Scholar
  280. Sykes, R. M., 1973, Identification of the limiting nutrient and specific growth rate, J. Water Poll. Control Fed. 45:888–895.Google Scholar
  281. Tabor, P. S., and Neihof, R. A., 1982, Improved microautoradiographic method to determine individual microorganisms active in substrate uptake in natural waters, Appl. Environ. Microbiol. 44:945–953.PubMedGoogle Scholar
  282. Tate III, R. L., 1986, Environmental microbial autecology: Practicality and future, in: Microbial Autecology (R. L. Tate III, ed.), Wiley, New York, pp. 249–259.Google Scholar
  283. Tauchert, K., Jahn, A., and Oelse, J., 1990, Control of diauxic growth of Azotobacter vinelandii, J. Bacteriol. 172:6447–6451.PubMedGoogle Scholar
  284. Tempest, D. W., 1970a, The continuous cultivation of microorganisms. 1. Theory of the chemostat, Meth. Microbiol. 2:259–276.CrossRefGoogle Scholar
  285. Tempest, D. W., 1970b, The place of continuous culture in microbiological research, Adv. Microb. Physiol. 4:223–250.CrossRefGoogle Scholar
  286. Tempest, D. W., and Neijssel, O. M., 1978, Eco-pysiological aspects of microbial growth in aerobic nutrient-limited environments, Adv. Microb. Ecol. 2:105–153.CrossRefGoogle Scholar
  287. Tempest, D. W., Neijssel, O. M., and Zevenboom, W., 1983, Properties and performance of microorganisms in laboratory culture: Their relevance to growth in natural ecosystems, in: Microbes in Their Natural Environment (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), Cambridge University Press, Cambridge, England, pp. 119–152.Google Scholar
  288. Thingstad, T. F., 1987, Utilization of N, P, and organic C by heterotrophic bacteria. I. Outline of a chemostat theory with a consistent concept of “maintenance” metabolism, Mar. Ecol. Prog. Ser. 35:99–109.CrossRefGoogle Scholar
  289. Thingstad, T. F., and Pengerud, B., 1985, Fate and effect of allochthonous organic material in aquatic microbial ecosystems. An analysis based on chemostat theory, Mar. Ecol. Prog. Ser. 21:47–62.CrossRefGoogle Scholar
  290. Thurston, B., Dawson, K. A., and Strobel, H. J., 1984, Pentose utilization by the ruminai bacterium Ruminococcus albus, Appl. Environ. Microbiol. 60:1087–1092.Google Scholar
  291. Tilman, D., 1980, Resources: A graphical-mechanistic approach to competition and predation, Am. Nat. 116:362–393.CrossRefGoogle Scholar
  292. Tilman, D., 1982, Resource Competition and Community Structure, Princeton University Press, Princeton, N.J.Google Scholar
  293. Torella, F., and Morita, R. Y., 1981, Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater, Appl. Environ. Microbiol. 41:518–527.Google Scholar
  294. Torriani-Gorini, A., 1987, The birth and growth of the Pho regulon, in: Phosphate Metabolism and Cellular Regulation in Microorganisms (A. Torriani-Gorini, F. G. Rothman, S. Silver, A. Wright, and E. Yagil, eds.), American Society for Microbiology, Washington, D.C., pp. 12–19.Google Scholar
  295. Tranvik, L. J., 1990, Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters, Appl. Environ. Microbiol. 56:1672–1677.PubMedGoogle Scholar
  296. Tranvik, L. J., and Höfle, M., 1987, Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters, Appl. Environ. Microbiol. 53:482–488.PubMedGoogle Scholar
  297. Tyree, R. W., Clausen, E. C., and Gaddy, J. L., 1990, The fermentative characteristics of Lactobacillus xylosus on glucose and xylose, Biotechnol Lett. 12:51–56.CrossRefGoogle Scholar
  298. Uetz, T., and Egli, T., 1993, Characterization of an inducible, membrane-bound iminodiacetate dehydrogenase from Chelatobacter heintzii ATCC 29600, Biodegradation 3:423–434.CrossRefGoogle Scholar
  299. Uetz, T., Schneider, R., Snozzi, M., and Egli, T., 1992, Purification and characterization of a two component monooxygenase that hydroxylates nitrilotriacetate from “Chelatobacter” strain ATCC 29600, J. Bacteriol. 174:1179–1188.PubMedGoogle Scholar
  300. Upton, A. C., and Nedwell, D. B., 1989, Nutritional flexibility of oligotrophic and copiotrophic antarctic bacteria with respect to organic substrates, FEMS Microbiol. Ecol. 62:1–6.CrossRefGoogle Scholar
  301. van Dam, K., and Jansen, N., 1991, Quantification of control of microbial metabolism by substrates and enzymes, Antonie van Leeuwenhoek 60:209–223.PubMedCrossRefGoogle Scholar
  302. van der Kooij, D., 1990, Assimilable organic carbon (AOC) in drinking water, in: Drinking Water Microbiology: Progress and Recent Developments (G. A. McFeters, ed.), Springer-Verlag, New York, pp. 57–87.CrossRefGoogle Scholar
  303. van der Kooij, D., and Hijnen, W. A. M., 1983, Nutritional versatility of a starch-utilizing Flavobacterium at low substrate concentrations, Appl. Environ. Microbiol. 45:804–810.PubMedGoogle Scholar
  304. van der Kooij, D., and Hijnen, W. A. M., 1988, Nutritional versatility and growth kinetics of an Aeromonas hydrophila strain isolated from drinking water, Appl. Environ. Microbiol. 54:2842–2851.PubMedGoogle Scholar
  305. van der Kooij, D., Visser, A., and Hijnen, W. A. M., 1980, Growth of Aeromonas hydrophila at low concentrations of substrates added to tap water, Appl. Environ. Microbiol. 39:1198–1204.PubMedGoogle Scholar
  306. van der Kooij, D., Oranje, J. P., and Hijnen, W. A. M., 1982, Growth of Pseudomonas aeruginosa in tap water in relation to utilization of substrates at concentrations of a few micrograms per liter, Appl. Environ. Microbiol. 44:1086–1095.PubMedGoogle Scholar
  307. van Es, F. B., and Meyer-Reil, L.-A., 1982, Biomass and metabolic activity of heterotrophic marine bacteria, Adv. Microb. Ecol. 6:111–170.CrossRefGoogle Scholar
  308. van Verseveld, H. W., and Stouthamer, A. H., 1980, Two-(carbon) substrate-limited growth of Paracoccus denitrificans on mannitol and formate, FEMS Microbiol. Lett. 7:207–211.CrossRefGoogle Scholar
  309. van Verseveld, H. W., Boon, J. P., and Stouthamer, A. H., 1979, Growth yields and the efficiency of oxidative phosphorylation of Paracoccus denitrificans during two-(carbon) substrate-limited growth, Arch. Microbiol. 121:213–223.CrossRefGoogle Scholar
  310. van Zyl, C., Prior, B. A., Kilian, S. G., and Kock, J. L. F., 1989, D-Xylose utilization by Saccharomyces cerevisiae, J. Gen. Microbiol. 135:2791–2798.PubMedGoogle Scholar
  311. Veldkamp, H., and Jannasch, H. W., 1972, Mixed culture studies with the chemostat, J. Appl. Chem. Biotechnol. 22:105–123.CrossRefGoogle Scholar
  312. Vives-Rego, J., Billen, G., Fontigny, A., and Somville, M., 1985, Free and attached proteolytic activity in water environments, Mar. Ecol. Prog. Ser. 21:245–249.CrossRefGoogle Scholar
  313. Volfová, O., Korínek, V., and Kyslíková, E., 1988, Alcohol oxidase in Candida boidinii on methanol-xylose mixtures, Biotechnol. Lett. 10:643–648.CrossRefGoogle Scholar
  314. Wang, L., Miller, T. D., and Priscu, J. C., 1992, Bacterioplankton nutrient deficiency in a eutrophic lake, Arch. Hydrobiol. 125:423–439.Google Scholar
  315. Wanner, B., 1987a, Phosphate regulation of gene expression, in: Escherichia coli and Salmonella typhimurium, Vol. 2 (F. C. Neidhardt, J. L. Ingraham, K. Brooks, B. Magasanik, M. Schaechter, and H. E. Umbarger, eds.), American Society for Microbiology, Washington, D.C., pp. 1326–1333.Google Scholar
  316. Wanner, B., 1987b, Bacterial alkaline phosphatase gene regulation and the phosphate response in Escherichia coli, in: Phosphate Metabolism and Cellular Regulation in Microorganisms (A. Torriani-Gorini, F. G. Rothman, S. Silver, A. Wright, and E. Yagil, eds.), American Society for Microbiology, Washington, D.C., pp. 12–19.Google Scholar
  317. Wanner, U., and Egli, T., 1990, Dynamics of microbial growth and cell composition in batch culture, FEMS Microbiol. Rev. 75:19–44.CrossRefGoogle Scholar
  318. Waterham, H. R., Keizer-Gunnink, I., Goodman, J. M., Harder, W., and Veenhuis, M., 1992, Development of multipurpose peroxysomes in Candida biodinii growing in oleic acid-methanol limited continuous cultures, J. Bacteriol. 174:4057–4063.PubMedGoogle Scholar
  319. Weide, H., 1983, Mikrobielle Verwertung von Mischsubstraten, Z. Allg. Mikrobiol. 23:37–40.PubMedCrossRefGoogle Scholar
  320. Wetzel, R. G., 1984, Detrital dissolved and particulate organic carbon functions in aquatic ecosystems, Bull. Mar. Sci. 35:503–509.Google Scholar
  321. Weusthuis, R. A., Adams, H., Scheffers, W. A., and van Dijken, J. P., 1993, Energetics and kinetics of maltose transport in Saccharomyces cerevisiae: A continuous culture study, Appl. Environ. Microbiol. 59:3102–3109.PubMedGoogle Scholar
  322. Weusthuis, R. A., Luttik, M. A. H., Scheffers, W. A., van Dijken, J. P., and Pronk, J. T., 1994, Is the Kluyver effect caused by product inhibition? Microbiology 140:1723–1729.PubMedCrossRefGoogle Scholar
  323. White, D. C., 1986, Quantitative physiochemical characterization of bacterial habitats, in: Bacteria in Nature, Vol. 2 (J. S. Poindexter and Leadbetter, E. R., eds.), Plenum Press, New York, pp. 177–203.Google Scholar
  324. Wilberg, E., El-Banna, T., Auling, G., and Egli, T., 1993, Serological studies on nitrilotriacetic acid (NTA)-utilising bacteria: Distribution of Chelatobacter heintzii and Chelatococcus asaccharovorans in sewage treatments plants and aquatic ecosystems, System. Appl. Microbiol. 16:147–152.CrossRefGoogle Scholar
  325. Williams, P. J. le B., 1990, The importance of losses during microbial growth: Commentary on the physiology, measurement and ecology of the release of dissolved organic material, Mar. Microb. Food Webs 4:175–206.Google Scholar
  326. Williams, P. M., 1986, Chemistry of the dissolved and particulate phases in the water column, in: Plankton Dynamics of the Southern California Bight. Lecture Notes on Coastal and Estuarine Studies, Vol. 15 (R. W. Eppley, ed.), Springer-Verlag, Berlin, pp. 53–83.Google Scholar
  327. Williams, S. T., 1985, Oligotrophy in soil: Fact or fiction? in: Bacteria in the Natural Environment (M. Fletcher and G. D. Floodgate, eds.), Academic Press, London, pp. 81–110.Google Scholar
  328. Wong, T. Y., Pei, H., Bancroft, K., and Childers, G. W., 1995, Diauxic growth of Azotobacter vinelandii on galactose and glucose: Regulation of glucose transport by another hexose, Appl. Environ. Microbiol. 61:430–433.PubMedGoogle Scholar
  329. Wood, A. P., and Kelly, D. P., 1977, Heterotrophic growth of Thiobacillus A2 on sugars and organic acids, Arch. Microbiol. 113:257–264.PubMedCrossRefGoogle Scholar
  330. Wood, J. M., 1975, Leucine transport in Escherichia coli. The resolution of mulitple transport systems and their coupling to metabolic energy, J. Biol. Chem. 250:4477–4485.PubMedGoogle Scholar
  331. Yoon, H., and Blanch, H. W., 1977, Competition for double growth-limiting nutrients in continuous culture, J. Appl. Chem. Biotechnol. 27:260–268.CrossRefGoogle Scholar
  332. Yoon, H., Klinzing, G., and Blanch, H., 1977, Competition for mixed substrates by microbial populations, Biotechnol. Bioeng. 19:1193–1210.PubMedCrossRefGoogle Scholar
  333. ZoBell, C. E., and Grant, C. W., 1942, Bacterial activity in dilute nutrient solutions, Science 96:189.PubMedCrossRefGoogle Scholar
  334. ZoBell, C. E., and Grant, C. W., 1943, Bacterial utilization of low concentrations of organic matter, J. Bacteriol. 45:555–564.PubMedGoogle Scholar
  335. Zweifel, U. L., Norman, B., and Hagström, A., 1993, Consumption of dissolved organic carbon by marine bacteria and demand for inorganic nutrients, Mar. Ecol. Prog. Ser. 101:23–32.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1995

Authors and Affiliations

  • Thomas Egli
    • 1
  1. 1.Department of MicrobiologySwiss Federal Institute for Environmental Science and Technology (EAWAG)DübendorfSwitzerland

Personalised recommendations