Advertisement

Structural Variations in Proanthocyanidins and Their Derivatives

  • Richard W. Hemingway

Abstract

Structural complexity in the condensed tannins (polymeric proanthocyanidins) is centered principally on variations in hydroxylation patterns of the flavan chain extender units, the stereochemistry at the three chiral centers of the heterocyclic ring, the location and type of interflavanoid bond, and the structure of the terminal unit. Superimposed on these basic structural features are derivatizations such as O-methylation, C- and O-glycosylation, and O-galloylation. Because of the strong nucleophilicity of the resorcinolic or phloroglucinolic A-rings, some unusual conjugates linked through the C-6 or C-8 positions have also been found. A further level of structural diversity results from facile rearrangements of these compounds. Although great progress has been made in elucidation of the structure of oligomeric proanthocyanidins, our knowledge of the structure of higher polymers rests primarily on interpretations of their 13C-NMR spectra.

Keywords

Condensed Tannin Chain Extender Terminal Unit Pyran Ring Rearrangement Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hemingway, R.W. Biflavonoids and proanthocyanidins. In:Rowe, J.W. (ed.) Natural Products Extraneous to the Lignocellulosic Cell Wall of Woody Plants. Springer-Verlag (in press).Google Scholar
  2. 2.
    Porter, L.J. Flavans and proanthocyanidins, In: Harborne, J.B. (ed.) The Flavanoids. Advances in Research Since 1980. Chapman and Hall, London, pp. 21–62 (1988).Google Scholar
  3. 3.
    Czochanska, Z.; Foo, L.Y.; Newman, R.H.; Porter. L. J. Polymeric proanthocyanidins. Stereochemistry, structural units, and molecular weight. J. Chem. Soc. Perkin Trans. I: 2278 (1980).Google Scholar
  4. 4.
    Porter, L.J. Condensed tannins, In:Rowe, J.W. (ed.) Natural Products Extraneous to the Lignocellulosic Cell Wall of Woody Plants. Springer-Verlag (in press).Google Scholar
  5. 5.
    Karchesy, J.J.; Hemingway R.W. Loblolly pine bark polyflavonoids. J. Agric. Food Chem. 28: 222 (1980).CrossRefGoogle Scholar
  6. 6.
    Porter, L.J; Newman, R.H; Foo, L.Y; Wong, H.; Hemingway, R.W. Polymeric proanthocyanidins: 13C-nmr studies of procyanidins. J. Chem. Soc. Perkin Trans. 1: 1217 (1982).CrossRefGoogle Scholar
  7. 7.
    Newman, R.H.; Porter, L.J.; Foo, L.Y.; Johns, S.R.; Willing, R.I. High resolution 13 C NMR studies of proanthocyanidin polymers. Mag. Res. Chem. 25: 118 (1982).CrossRefGoogle Scholar
  8. 8.
    Viswanathan, V.N.; Mattice, W.L. Preferred conformations of the sixteen (4 —0. 6) and (4 —+ 8) linked dimers of (+)-catechin and (-)-epicatechin with axial or equatorial dihydroxyphenyl rings at C(2). J. Chem. Soc. Perkin Trans. 2: 739 (1987).Google Scholar
  9. 9.
    Young, D.A.; Cronje, A.; Botes, A.L.; Ferreira, D.; Roux D.G. Synthesis of condensed tannins. Part 14. Biflavanoid profisetinidins as synthons. The acid-induced `phlobaphene’ reaction. J. Chem. Soc. Perkin Trans. 1: 2521 (1985).CrossRefGoogle Scholar
  10. 10.
    Weinges, K.; Kaltenhauser, W.; Marx, H.-D.; Nader, E.; Nader. F.; Perner, J.; Seiler, D. Procyanidine aus fruchten. Liebigs Ann. Chem. 711: 184 (1968).CrossRefGoogle Scholar
  11. 11.
    Weinges, K.; Bahr, W.; Ebert, W.; Goritz, K.; Marx, H.-D. Konstitution, entstehung, und bedeutung der flavonoid gerbstoffe. Fortschr. Chem. Org. Naturst. 27: 158 (1969).Google Scholar
  12. 12.
    Thompson, R.S.; Jacques, D.; Haslam, E.; Tanner, R.J.N. Plant proanthocyanidins. PartI. Introduction: the isolation, structure and distribution in nature of plant procyanidins.J. Chem. Soc. Perkin Trans. 1:1387 (1972).Google Scholar
  13. 13.
    Haslam, E. Natural proanthocyanidins. In: Harborne, J.B.; Mabry, T.J.; Mabry, H. (eds.) The Flavonoids. Academic Press, New York, p. 505–559 (1975).Google Scholar
  14. 14.
    Haslam, E. Proanthocyanidins. In: Harborne, J.B.; Mabry, T.J.; Mabry, H. (eds.) The Flavonoids: Advances in Research. Chapman and Hall, London, p. 417–447 (1982).Google Scholar
  15. 15.
    Roux, D.G.; Ferreira, D. The direct biomimetic synthesis, structure and absolute configuration of angular and linear condensed tannins. Fortschr. Chem. Org. Naturst. 41: 48 (1982).Google Scholar
  16. 16.
    Roux, D.G.; Ferreira, D. Structure and function in biomimetic synthesis of linear, angular and branched condensed tannins. Rev. Pure and Applied Chem. 54: 2465 (1982).CrossRefGoogle Scholar
  17. 17.
    Hemingway, R.W.; Foo, L.Y.; Porter, L.J. Linkage isomerism in trimeric and polymeric 2,3-cis procyanidins. J. Chem. Soc. Perkin Trans. 1: 1209 (1982).CrossRefGoogle Scholar
  18. 18.
    Karchesy, J.J.; Hemingway, R.W. Condensed Tannins: (40 -. 8;20 -s O -+ 7)-linked procyanidins in Arachis hypogaea. L. J. Agric. Food Chem. 34: 966 (1986).CrossRefGoogle Scholar
  19. 19.
    Geiger, H.; Quinn, C. Biflavonoids. In Harborne, J.B.; Mabry, T.J. (eds.) The Flavonoids: Advances in Research. Chapman and Hall Ltd., London, p. 505–539 (1982).Google Scholar
  20. 20.
    Dewick, P.M., Isoflavonoids. In Harborne, J.B., Mabry, T.J. (eds.) The Flavonoids. Advances in Research, Chapman and Hall Ltd. London, p. 535–632 (1982).Google Scholar
  21. 21.
    Bezuidenhoudt, B.C.B.; Brandt, E.V., Steenkamp, J.A., Roux, D.G., Ferreira, D., Oligomeric isoflavanoids. Part 1. Structure and synthesis of the first (2,3’) isoflavone-isoflavan dimer. J. Chem. Soc. Perkin Trans. 1:1227 (1988).Google Scholar
  22. 22.
    Bezuidenhoudt, S.E., Bezuidenhoudt, B.C.B.; Brandt, E.V., Ferreira, D., Oligomeric isoflavanoids. Part 2. Structure and synthesis of xanthocercin A and B. The first isoflavonoidlignols. J. Chem. Soc. Perkin Trans. 1:1237 (1988).Google Scholar
  23. 23.
    Hsu, F.; Nonaka, G.; and Nishioka, I. Tannins and related compounds. XXXI. Isolation and characterization of proanthocyanidins in Kandelia candel (L.) Druce. Chem. Pharm. Bull. 33: 3142 (1985).CrossRefGoogle Scholar
  24. 24.
    Nonaka, G.; Nishioka, I. Novel biflavonoids, chalcan-flavan dimers from gambir. Chem. Pharm. Bull. 28: 3145 (1980).CrossRefGoogle Scholar
  25. 25.
    Delle-Monache, F.; Pomponi, M.; Marini-Bettolo, G.B.; D’Albuquerque, I.L.; Delima, O.G. A methylated catechin and proanthocyanidin from the Celastraceae. Phytochemistry 15: 573 (1976).CrossRefGoogle Scholar
  26. 26.
    Weeratunga, G.; Bohlin, L.; Verpoorte, R.; Kumar, V. Flavonoids from Elaeodendron balae root bark. Phytochemistry 24: 2093 (1985).CrossRefGoogle Scholar
  27. 27.
    Ohigashi, H.; Minami, S.; Fukui, H.; Koshimizu, K.; Mizutani, F.; Sugiura, A.; Tomana, T. Flavanols, as plant growth inhibitors from the roots of peach, Prunus persica Batsh. cv. Flavanols, as plant growth inhibitors from the roots of peach, Prunus persica Batsh. cv. ‘Hakato’. Agric. Biol. Chem. 46: 2555 (1982).CrossRefGoogle Scholar
  28. 28.
    Porter, L.J. (personal communication).Google Scholar
  29. 29.
    Hikino, H.; Shimoyama, N.; Kasahara, Y.; Takahashi, M.; Konno, C. Structures of mahuannin A and B, hypotensive principles of Ephedra roots. Heterocycles 19: 1381 (1982).CrossRefGoogle Scholar
  30. 30.
    Hikino, H.; Takahasi, M.; Konno, C. Structure of ephedrannin A, a hypotensive principle of Ephedra roots. Tetrahedron Letts. 23: 673 (1982).CrossRefGoogle Scholar
  31. 31.
    Kasahara, Y.; Hikino, H. Structure of mahuannin D, a hypotensive principle of Ephedra roots. Heterocycles 20: 1953 (1983).CrossRefGoogle Scholar
  32. 32.
    Weinges, K.; Goritz, K.; Nader, F. Zur kenntnis der proanthocyanidine XI. Konfigurationsbestimmung von Cap H26 012-procyanidinen und struckturauf-klarung eines neuen procyanidin. Leibigs Ann. Chem. 715: 164 (1968).CrossRefGoogle Scholar
  33. 33.
    Middlekoop, T.B.; Labadie, R.P. Proanthocyanidins in the bark of Saraca asoca Roxb. de Wilde. Z. Naturforsch. 40B: 855 (1985).Google Scholar
  34. 34.
    Outtrup, H.; Schaumburg, K. Structure elucidation of some proanthocyanidins in barley by 1H-270 MHz-NMR spectroscopy. Carlsberg Res. Commun. 46: 43 (1981).CrossRefGoogle Scholar
  35. 35.
    Lebreton, PH.; Thivend, S.; Boutard, B. Distribution des proanthocyanidines chez les gymnospermes. Plants Med. Phytotherapie 14: 105 (1980).Google Scholar
  36. 36.
    Samejima, M.; Yoshimoto, T. Systematic studies on the stereochemical composition of proanthocyanidins from coniferous bark. Mokuzai Gakkashi 28: 67 (1982).Google Scholar
  37. 37.
    Gupta, R.K.; Haslam, E. Plant proanthocyanidins. Part 7. Prodelphinidins from Picas sylvestris. J. Chem. Soc. Perkin Trans. 1: 1148 (1981).CrossRefGoogle Scholar
  38. 38.
    Foo, L.Y.; Porter, L.J. Prodelphinidin polymers: Definition of structural units. J. Chem. Soc. Perkin Trans. 1: 1186 (1978).CrossRefGoogle Scholar
  39. 39.
    Brandon, M.J.; Foo, L.Y.; Porter, L.J.; Meredith, P. Proanthocyanidins of barley and sorghum; composition as a function of maturity of barley ears. Phytochemistry 21: 2953 (1982).CrossRefGoogle Scholar
  40. 40.
    Delcour, J.A.; Tuytens, G.M. Structure elucidation of three dimeric proanthocyanidins isolated from a commercial Belgian pilsner beer. J. Inst. Brew. 90: 153 (1984).Google Scholar
  41. 41.
    Sun, D.; Zhao, A.; Wong, H.; Foo, L.Y. Tannins and other phenolics from Myrica esculenta bark. Phytochemistry 27: 579 (1988).CrossRefGoogle Scholar
  42. 42.
    Nonaka, G.; Muta, M.; Nishioka, I. Myricatin, a galloyl-flavanol-sulfate and prodelphinidin gallate from Myrica rubra. Phytochemistry 22: 237 (1983).CrossRefGoogle Scholar
  43. 43.
    Sun, D.; Wong, H.; Foo. L.Y. Proanthocyanidin dimers and polymers from Quercus dentata. Phytochemistry 26: 1825 (1987).CrossRefGoogle Scholar
  44. 44.
    Ohara, S.; Hemingway, R.W. The phenolic extractives of southern red oak Quercus falcata var. falcata bark. Holzforschung (in press).Google Scholar
  45. 45.
    duPreez, I.C.; Rowan, A.C.; Roux, D.G. A biflavanoid proanthocyanidin carboxylic acid and related biflavonoids from Acacia luderitzii, Engl. var. retinens, J. Ross and Brenan. J. Chem. Soc. Chem. Commun.: 492 (1970).Google Scholar
  46. 46.
    Pelter, A.; Amenechi, P.I.; Warren, R. The structures of two proanthocyanidins from Julbernadia globiflora. J. Chem. Soc. (C): 2572 (1969).Google Scholar
  47. 47.
    Patil, A.D.; Desphande, V.H. A new dimeric proanthocyanidin from Cassia fistula sapwood. Indian J. Chem. 21B: 626 (1982).Google Scholar
  48. 48.
    Steenkamp, J.A., Malan, J.C.S.; Roux, D.G.; Ferreira, D., Oligomeric flavanoids. Part 1. Novel dimeric profisetinidins from Colophospermum mopane. J. Chem. Soc. Perkin Trans. 1: 1325 (1988).CrossRefGoogle Scholar
  49. 49.
    Steynberg, J.P.; Ferreira, D.; Roux, D.G. The first condensed tannins based on a stilbene. Tetrahedron Letts. 24: 4147 (1983).CrossRefGoogle Scholar
  50. 50.
    Steynberg, J.P.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins: Part 18. Stilbenes as potent nucleophiles in regio-and stereospecific condensations: novel guibourtinidolstilbenes from Guibourtia coleosperma. J. Chem. Soc. Perkin Trans. 1: 1705 (1987).CrossRefGoogle Scholar
  51. 51.
    Botha, J.J.; Viviers, P.M.; Young, D.A.; duPreez, I.C.; Ferreira, D.; Roux, D.G.; Hull, W.E. Synthesis of condensed tannins. Part 5. The first angular (4,6:4,8)-triflavonoids and their natural counterparts. J. Chem. Soc. Perkin Trans. 1: 527 (1982).CrossRefGoogle Scholar
  52. 52.
    Young, D.A.; Ferreira, D.; Roux, D.G.; Hull, W.E. Synthesis of condensed tannins. Part 15. Structure of natural `angular’ profisetinidin tetraflavanoids: Asymetric induction during oligomeric synthesis. J. Chem. Soc. Perkin Trans. 1: 2529 (1985).CrossRefGoogle Scholar
  53. 53.
    Botha, J.J.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins, Part 4. A direct biomimetic approach to (4,6) and (4,8) biflavanoids. J. Chem. Soc. Perkin Trans. I: 1235 (1981).Google Scholar
  54. 54.
    Steenkamp, J.A.; Ferreira, D.; Roux, D.G.; Hull, W.E. Synthesis of condensed tannins. Part 8. The first branched (4,6:4,8:4,6)-tetraflavonoid. Coupling sequence and absolute configuration. J. Chem. Soc. Perkin Trans. I: 23 (1983).Google Scholar
  55. 55.
    Viviers, P.M.; Young, D.A.; Botha, J.S.; Ferreira, D.; Roux, D.G.; Hull, W.E. Synthesis of condensed tannins. Part 6. The sequence of units, coupling positions and absolute configuration of the first linear (4,6:4,6) triflavanoid with terminal 3,4-diol function. J. Chem. Soc. Perkin Trans. I: 535 (1982).Google Scholar
  56. 56.
    Brandt, E.V.; Young, D.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 20. Cycloconformations and conformational stability amoung derivatives of `angular’ tetraflavanoid profisetinidins. J. Chem. Soc. Perkin Trans. I:2353 (1987).Google Scholar
  57. 57.
    Viviers, P.M.; Kolodziej, H.; Young, D.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 11. Intramolecular enantiomerism of constituent units of tannins from the Anacardiaceae: Stoichiometric control in direct synthesis, derivation of tH nuclear magnetic resonance parameters applicable to higher oligomers. J. Chem. Soc. Perkin Trans. 1: 2555 (1983).CrossRefGoogle Scholar
  58. 58.
    Foo, L.Y. Condensed tannins: co-occurrence of procyanidins, prodelphinidins and profisetinidins in the heartwood of Acacia baileyana. Phytochemistry 23: 2915 (1984).CrossRefGoogle Scholar
  59. 59.
    Botha, J.J.; Ferreira, D.; Roux, D.G. Condensed tannins: Direct synthesis, structure and absolute configuration of four biflavanoids from black wattle (`mimosa’) extract. J. Chem. Soc. Chem. Commun.: 700 (1978).Google Scholar
  60. 60.
    Viviers, P.M.; Botha, J.J.; Ferreira, D.; Roux, D.G.; Saayman, H.M. Synthesis of condensed tannins. Part 7. Angular (4,6:4,8)- prorobinetinidin triflavanoids from black wattle (`mimosa’) bark extract. J. Chem. Soc. Perkin Trans. 1:17 (1983).Google Scholar
  61. 61.
    Sparrow, N.A.; Russell, A.E.; Glasser, L. The measurement of the binding of tannin subunits to soluble collagen by continuous-flow dynamic dialysis. J. Soc. Leather Tech. Chem. 66: 97 (1982).Google Scholar
  62. 62.
    Pizzi, A. Tannin-based adhesives. In: Pizzi, A., (ed.). Wood Adhesives, Chemistry and Application. Marcel Dekker, New York p. 177–246 (1982).Google Scholar
  63. 63.
    Jacobs, E.; Ferreira, D.; Roux, D.G. Atropisomerism in a new class of condensed tannins based on biphenyl and o-terphenyl. Tetrahedron Letts. 24: 4627 (1983).CrossRefGoogle Scholar
  64. 64.
    Foo, L.Y. A novel pyrogallol A-ring proanthocyanidin dimer from Acacia melanoxylon. J. Chem. Soc. Chem. Commun.: 236 (1987).Google Scholar
  65. 65.
    Gujer, R.; Magnolato, D.; Self, R. Glycosylated flavonoids and other phenolic compounds from sorghum. Phytochemistry 25: 1431 (1986).CrossRefGoogle Scholar
  66. 66.
    Ellis, C.J.; Foo, L.Y.; Porter, L.J. Enantiomerism: a characteristic of the proanthocyanidin chemistry of the Monocotyledonae. Phytochemistry 22: 483 (1983).CrossRefGoogle Scholar
  67. 67.
    Nonaka, G.; Miwa, N.; Nishioka, I. Stilbene glycoside gallates and proanthocyanidins from Polygonum multiflorum. Phytochemistry 21: 429 (1982).Google Scholar
  68. 68.
    Nonaka, G.:Ezaki, E.; Hayashi, K.; Nishioka, I. Flavanol glucosides from rhubarb and Rhaphiolepsis umbellata. Phytochemistry 22: 1659 (1983).Google Scholar
  69. 69.
    Young, D.A.; Kolodziej, H., Ferreira, D.: Roux, D.G. Synthesis of condensed tannins. Part 16. Stereochemical differentiation of the first `angular’ (2S,3R-profisetinidin tetraflavanoids from Rhus lancea (Karree) and the varying dynamic behavior of ther derivatives. J. Chem. Soc. Perkin Trans. 1: 2537 (1985).CrossRefGoogle Scholar
  70. 70.
    Hemingway, R.W.; Karchesy, J.J.; McGraw, G.W.; Wielesek, R.A. Heterogeneity of interflavanoid bond location in loblolly pine bark procyanidins. Phytochemistry 22: 275 (1983).CrossRefGoogle Scholar
  71. 71.
    Porter, L.J.; Hemingway, R.W. (unpublished results).Google Scholar
  72. 72.
    Delcour, J.A.; Serneels, E.J.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins Part 13. The first 2,3-trans-3,4-cis procyanidin: sequence of units in a trimer of mixed stereochemistry. J. Chem. Soc. Perkin Trans. 1: 669 (1985).CrossRefGoogle Scholar
  73. 73.
    Kolodziej, H. The first 2,3-trans-3,4-cis procyanidin. Phytochemistry 24: 2460 (1985).CrossRefGoogle Scholar
  74. 74.
    Schleep, S.; Friedrich, H.; Kolodziej, H. The first natural procyanidin with a 3,4-cis configuration. J. Chem. Soc. Chem. Commun.: 392 (1986).Google Scholar
  75. 75.
    Nonaka, G.; Hsu, F-L.; Nishioka, I. Structures of dimeric, trimeric and tetrameric procyanidins from Areca catechu. J. Chem. Soc. Chem. Commun.: 781 (1981).Google Scholar
  76. 76.
    Gupta, R.K.; Haslam, E. J. Chem. Soc. Perkin Trans. 1: 892 (1978)CrossRefGoogle Scholar
  77. 77.
    Kolodziej, H.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 12. Direct access to [4,6]- and [4,8]- all cis procyanidin derivatives from (-)-epicatechin: Assessment of bonding positions in oligomeric analogues from Crataegus oxyacantha L. J. Chem. Soc. Perkin Trans. 1: 343 (1985).Google Scholar
  78. 78.
    Foo, L.Y.; Hemingway, R.W. Condensed tannins: synthesis of the first `branched’ procyanidin trimer. J. Chem. Soc. Chem. Commun.: 85 (1984).Google Scholar
  79. 79.
    Mattice, W.L.; Porter, L.J. Molecular weight averages and 13C-nmr intensities provide evidence for branching in proanthocyanidin polymers. Phytochemistry 23: 1309 (1984).CrossRefGoogle Scholar
  80. 80.
    Locksley, H.D. The chemistry of biflavonoid compounds. Fortschritt. Chem. Org. Naturst. 30: 207 (1973).Google Scholar
  81. 81.
    Geiger, H.; Quinn, C. Biflavonoids, In: Harborne, J.B.; Mabry, T.J. (eds.) The Flavonoids. Academic Press, New York, p. 692–742 (1975).Google Scholar
  82. 82.
    Betts, 1\4.J.; Brown, B.R.; Shaw, M.R. Reactions of flavonoids with mercaptoacetic acid. J. Chem. Soc. (C): 1178 (1969).Google Scholar
  83. 83.
    Sears, K.D.; Casebier, R.L. Cleavage of proanthocyanidins with thioglycollic acid. J. Chem. Soc. Chem. Commun.: 1437 (1968).Google Scholar
  84. 84.
    Geissman, T.A.; Dittmar, H.F.K. A proanthocyanidin from avocado seed. Phytochemistry 4: 359 (1965).CrossRefGoogle Scholar
  85. 85.
    Mayer, W.; Goll, L.; von Arndt, E.M.; Mannschreck, A. Procyanidino-(-)-epicatechin, ein zweiarmig verknupftes condensiertes proanthocyanidin aus Aesculas hippocastanum. Tetrahedron Letts. 4: 429 (1966).Google Scholar
  86. 86.
    Jacques, D.; Haslam, E.; Bedford, G.R.; Greatbanks, D. Plant proanthocyanidins. Part II. Proanthocyanidin A2 and its derivatives. J. Chem. Soc. Perkin Trans. 1: 2663 (1974).CrossRefGoogle Scholar
  87. 87.
    Otsuka, H.; Fujioka, S.; Komiya T.; Mizuta, E.; Takamoto, M. Studies on anti-inflammatory agents: VI Anti-inflammatory constitutents of Cinnamomum sieboldei. Meissn. Yakugaku Zasshi 102: 162 (1982).PubMedGoogle Scholar
  88. 88.
    Schilling, C.; Weinges, K.; Muller, O.; Mayer, W. 13C-NMR spektroskopische konstitutionsermittlung der C30H24012-procyanidine. Liebigs Ann. Chem.: 1471 (1973).Google Scholar
  89. 89.
    Nonaka, G.; Morimoto, S.; Nishioka, I. Tannins and related compounds. Part 13. Isolation and structures of trimeric, tetrameric and pentameric proanthocyanidins from cinnamon. J. Chem. Soc. Perkin Trans. 1:2139 (1983).Google Scholar
  90. 90.
    Fisher, N. (personal communication).Google Scholar
  91. 91.
    Drewes, S.E.; Ilsley, A.H. Dioxane-linked biflavanoid from the heartwood of Acacia mearnsii. J. Chem. Soc. (C): 897 (1969).Google Scholar
  92. 92.
    Young, D.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 10. Dioxane linked profisetinidins. J. Chem. Soc. Perkin Trans. 1: 2031 (1983).CrossRefGoogle Scholar
  93. 93.
    Freudenberg, K.; Alonso de Lama, J.M. Zur kenntnis der catechin gerbstoffe. Liebigs Ann. Chem. 612: 78 (1958).Google Scholar
  94. 94.
    Freudenberg, K; Weinges, K. Zur Kenntnis der flavonoid-gerbstoffe. Liebigs Ann. Chem. 668: 92 (1963).CrossRefGoogle Scholar
  95. 95.
    Weinges, K.; Ebert, W. Isolierung eines kristallisierten dehydriernungs dimeren aus (+)catechin. Phytochemistry 7: 153 (1968).CrossRefGoogle Scholar
  96. 96.
    Weinges, K.; Ebert, W.; Huthwelker, D.; Mattauch, H.; Penser J. Konstitution und bildungsmechanisim des dehydro-dicatechin A. Liebigs Ann. Chem. 726: 114 (1969).CrossRefGoogle Scholar
  97. 97.
    Brown, A.G.; Eyton, W.B.; Holmes, A.; Ollis, W.D. The identification of the thearubigins as polymeric proanthocyanidins. Phytochemistry 8: 2333 (1969).CrossRefGoogle Scholar
  98. 98.
    Coxon, D.T.; Holmes, A.; Ollis, W.D.; Vora, V.C.; Grant, M.S.; Tee, J.L. Flavanol digallates in green tea leaf. Tetrahedron 28: 2819 (1972).CrossRefGoogle Scholar
  99. 99.
    van Soest, T.C. Aufklarung der molekularstrukur structur des dehydro-dicatechins A durch rontgenstrukturanalyse seines bromoheptamethylathers. Liebig Ann. Chem. 754: 137 (1971).CrossRefGoogle Scholar
  100. 100.
    Young, E.; Brandt, E.V., Young, D.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 17;. Oligomeric (2R,3S)-3,3’,4’,7,8-pentahydroxyflavans: atropisomerism and conformation of biphenyl and m-terphenyl analogues from Prosopis glandulosa (Mesquite). J. Chem. Soc. Perkin Trans. 1: 1737 (1986).CrossRefGoogle Scholar
  101. 101.
    Brandt, E.V.; Young, D.A.; Young, E.; Ferreira, D. Absolute configuration of atropisomeric m-terphenyl-type fiavan-3-ols. J. Chem. Soc. Perkin Trans. 2: 1365 (1987).Google Scholar
  102. 102.
    Malan, J.C.S., Young, D.A., Steenkamp, J.A., Ferreira, D. Oligomeric flavanoids. Part 2. The first profisetinidins with dihydrofiavonols constituent units. J. Chem. Soc. Perkin Trans. 1 (in press).Google Scholar
  103. 103.
    Young, D.A.; Young, E., Roux, D.G., Brandt, V., Ferreira, D. Synthesis of condensed tannins. Part 19. Phenol oxidative coupling of (+)-catechin and (+)-mesquitol. Conformation of bis-(+)-catechins. J. Chem. Soc. Perkin Trans. 1: 2345 (1987).CrossRefGoogle Scholar
  104. 104.
    Kolodziej, H. [2’,2’]-(+)-Catechin-(+)-taxifolin from commercial willow bark: structure, bonding positions and oxidative cleavage. J. Chem. Soc. Perkin Trans. 1: 219 (1988).CrossRefGoogle Scholar
  105. 105.
    Ahn, B-Z; Gstirner, F. Uber catechin dimere der eichenrinde. Arch. Pharmaz. 304: 666 (1971).CrossRefGoogle Scholar
  106. 106.
    Ahn, B-Z. Ein catechin trimer aus der eichenrinde. Arch. Pharmaz. 307: 186 (1974).CrossRefGoogle Scholar
  107. 107.
    Ishimura, K.; Nonaka, G.; Nishioka, I. Flavan-3-ol and procyanidin glycosides from Quercus miyagii. Phytochemistry 26: 1167 (1987).CrossRefGoogle Scholar
  108. 108.
    Porter, L.J.; Wong, R.Y.; Chan, B.G. The molecular and crystal structure of (+)-2,3-trans3,4- trans-leucocyanidin [(2R,3S,4R)-(+)-3,3’,4,4’,5,7-hexahydroxyflavan] dihydrate and comparison of its heterocyclic conformation in solution and the solid state. J. Chem. Soc. Perkin Trans. 1: 1413 (1985).CrossRefGoogle Scholar
  109. 109.
    Stafford, H.A.; Lester, H.H. Flavan-3-ol biosynthesis, the conversion of (+)-dihydroquercetin and flavan-3,4-cis-diol (leucocyanidin) to (+)-catechin by reductases extracted from cell suspension cultures of Douglas fir. Plant Physiol. 76: 184 (1984).PubMedCrossRefGoogle Scholar
  110. 110.
    Stafford, H.A.; Lester, H.H.; Porter, L.J. Chemical and enzymic synthesis of monomeric procyanidins (leucocyanidins or 3’,4’,5,7-tetrahydroxyflavan-3,4-diols) from 2R,3R-dihydroquercetin. Phytochemistry 24: 333 (1985).CrossRefGoogle Scholar
  111. 111.
    Kolodziej, H. The first naturally occurring 4-arylflavan-3-ol. Tetrahedron Letts. 24: 1825 (1983).CrossRefGoogle Scholar
  112. 112.
    Haslam, E. Symmetry and promiscuity in procyanidin biochemistry. Phytochemistry 16: 1625 (1977).CrossRefGoogle Scholar
  113. 113.
    Wollenweber, E. Flavones and flavonols, In: Harborne, J.B.; Mabry, T.J. (eds.) The Flavonoids: Advances in Research, Chapman and Hall, London, New York, pp. 189–259 (1982).Google Scholar
  114. 114.
    Morimoto, S.; Tanabe, H.; Nonaka, G.; Nishioka, I. Prenylated flavan-3-ols and procyanidins from Illicium anisatum. Phytochemistry 27: 907 (1988).CrossRefGoogle Scholar
  115. 115.
    Porter, L.J.; Foo, L.Y.; Furneaux, R.H. Isolation of three naturally occurring 0–0-Dglucopyranosides of procyanidin polymers. Phytochemistry 24: 567 (1985).CrossRefGoogle Scholar
  116. 116.
    Kashiwada, Y.; Nonaka, G.; Nishioka, I. Tannins and related compounds. XLV. Rhubarb (5). Isolation and characterization of flavan-3-ol and procyanidin glucosides. Chem Pharm. Bull. 34: 3208 (1986).CrossRefGoogle Scholar
  117. 117.
    Morimoto, S.; Nonaka, G.; Nishioka, I. Tannins and related compounds XXXIX. Procyanidin C-glycosides and an acylated flavan-3-ol glucoside from the barks of Cinnamomum cassia Blume and C. obtusifolium Nees. Chem. Pharm. Bull. 34: 643 (1986).CrossRefGoogle Scholar
  118. 118.
    Neilson M.J.; Painter, T.J.; Richards, G.N. Flavologlycan: a novel glycoconjugate from leaves of mangrove (Rhizophora stylosa, Griff.). Carbohydrate Res. 147: 315 (1986).CrossRefGoogle Scholar
  119. 119.
    Richards, G.N. (personal communication).Google Scholar
  120. 120.
    Shen, Z.; Haslam, E.; Falshaw, C.P.; Begley, M.J. Procyanidins and polyphenols of Larix gmeliui bark. Phytochemistry 25: 2629 (1986).CrossRefGoogle Scholar
  121. 121.
    McManus, J.P.; Davies, K.G.; Bent, J.E.; Godfrey, S.H.; Lilley, T.H.; Haslam, E. Polyphenol interactions. Part 1. Introduction: some observations on the reversible complexation of polyphenols with proteins and polysaccharides. J. Chem. Soc. Perkin Trans. 2: 1429 (1985).Google Scholar
  122. 122.
    Foo, L.Y.; Porter, L.J. The phytochemistry of proanthocyanidin polymers. Phytochemistry 19: 1747 (1980).CrossRefGoogle Scholar
  123. 123.
    Nonaka, G.; Nishioka, 1.; Nagasawa, T.; Oura, H. Tannins and related compounds I. Rhubarb. Chem. Pharm. Bull. 29: 2862 (1981).CrossRefGoogle Scholar
  124. 124.
    Tanaka, T.; Nonaka, G.; Nishioka, I. 7-O-galloyl-(+)-catechin and 3-O-galloyl-procyanidin B-3 from Sanguisorba officinalis. Phytochemistry 22: 2576 (1983).Google Scholar
  125. 125.
    Tamir, M.; Nachtomi, E.; Alumot, E. Degradation of tannins from carob pods (Ceratonia siliqua) by thioglycolic acid. Phytochemistry 10: 2769 (1971).CrossRefGoogle Scholar
  126. 126.
    Hsu, F., Nonaka G., Nishioka. I. Acetylated flavanols and proanthocyanidns from Salix sieboldiana. Phytochemistry 24: 2089 (1985).CrossRefGoogle Scholar
  127. 127.
    Ferreira, D.; duPreez, I.C.; Wijamaalen, J.C.; Roux, D.G. Biflavanoid proquibourtinidin carboxylic acids and the biflavanoid homologues from Acacia luderitzii. Phytochemistry 24: 241. 5 (1985).Google Scholar
  128. 128.
    Nonaka, G.; Kawahara, O.; Nishioka, I. Tannins and related compounds. VIII. A new type of proanthocyanidin, cinchonains IIa and IIb from Cinchona succirubra. Chem. Pharm. Bull. 12: 4277 (1982).CrossRefGoogle Scholar
  129. 129.
    Homberger, K.; Hesse, M. Kopsirachin, ein ungewohnliches alkaloid aus der Apocynaceae Kopsia dasyrachis Ridl. Hely. Chim. Acta. 67: 237 (1984).CrossRefGoogle Scholar
  130. 130.
    Nonaka, G.; Nishimura, H.; Nishioka, I. Tannins and related compounds. Part 26. Isolation and structures of stenophyllanins A, B, and C, novel tannins from Quercus stenophylla. J. Chem. Soc. Perkin Trans. 1: 163 (1985).CrossRefGoogle Scholar
  131. 131.
    Herrick, F.W. Chemistry and utilization of western hemlock bark extractives. J. Agric. Food Chem. 28: 228 (1980).CrossRefGoogle Scholar
  132. 132.
    Sears, K.D.; Casebier, R.L.; Hergert, H.L.; Stoudt, G.H.; McCandlish, L.E. The structure of catediinic acid, a base-rearrangement product of catechin J. Org. Chem. 39: 3244 (1975).CrossRefGoogle Scholar
  133. 133.
    Courbat, P.; Weith, A.; Albert, A.; Pelter, A. Contribution a 1`etude du comportment de la catechin en tuileau alcalin. Hely. Chem. Acta. 60: 1665 (1977).CrossRefGoogle Scholar
  134. 134.
    Laks, P.E.; Hemingway, R.W. Condensed Tannins: Base-catalyzed reactions of polymeric procyanidins with toluene-a-thiol. Lability of the interflavanoid bond and pyran ring. J. Chem. Soc. Perkin Trans. 1: 465 (1987).CrossRefGoogle Scholar
  135. 135.
    Hemingway, R.W.; Laks, P.E. Condensed tannins: a proposed route to 2R,3R-(2,3-cis)proanthocyanidins. J. Chem. Soc. Chem. Commun.: 746 (1985).Google Scholar
  136. 136.
    Jacques, D.; Opie, C.T.; Porter, L.J.; Haslam, E. Plant proanthocyanidins. Part 4. Biosynthesis of procyanidins and observations on the metabolism of cyanidin in plants. J. Chem. Soc. Perkin Trans. 1: 1637 (1977).CrossRefGoogle Scholar
  137. 137.
    Platt, R.V.; Opie, C.T.; Haslam, E. Biosynthesis of flavan-3-ols and other secondary plant products from (2S)-phenylananine. Phytochemistry 23: 2211 (1984).CrossRefGoogle Scholar
  138. 138.
    Laks, P.E.; Hemingway, R.W.; Conner, A.H. Condensed tannins: Base-catalyzed reactions of polymeric procyanidins with phloroglucinol. Intramolecular rearrangements. J. Chem. Soc. Perkin Trans. 1: 1875 (1987).CrossRefGoogle Scholar
  139. 139.
    Laks, P.E.; Hemingway, R.W. Condensed tannins. Structure of the `phenolic acids’. Holzforschung 41: 287 (1987).CrossRefGoogle Scholar
  140. 140.
    Roux, D.G.; Ferreira, D.; Hundt, H.K.L.; Malan, E. Structure, stereochemistry and reactivity of natural condensed tannins as basis for their extended industrial application. J. Appl. Polym. Sci. Polym. Symp. No. 28: 335 (1975).Google Scholar
  141. 141.
    Steynberg, J.P., Young, D.A.; Burger, J.F.W.; Ferreira, D.; Roux, D.G. Phlobatannins via facile ring isomerizations of profisetinidin and prorobinetinidin condensed tannin units. J. Chem. Soc. Chem. Commun.: 1013 (1986).Google Scholar
  142. 142.
    Roux, D.G., Activation of some condensed tannins via facile ring isomerizations: potential adhesive applications. In: Hemingway, R.W.; Conner, A.H.; Branham, S.J. (eds.). Adhesives from Renewable Resources. ACS Symposium Series No. 385. pp. 217–228 (1989).Google Scholar
  143. 143.
    Steenkamp, J.A.; Steynberg, J.P.; Brandt, E.V.; Ferreira, D.; Roux, D.G. Phlobatannins, a novel class of ring isomerized condensed tannins. J. Chem Soc. Chem. Commun.: 1678 (1985).Google Scholar
  144. 144.
    Steynburg, J.P., Burger, J.F.W., Young, D.A., Brandt, E.V., Steenkamp, J.A., Ferreira, D. Oligomeric flavanoids. Part 3. Structure and synthesis of phlobatannins related to (-)fisetinidol (4a,6) and (4a,8)-(+)-catechin profisetinidins. J. Chem. Soc. Perkin Trans. I (in press).Google Scholar
  145. 145.
    Steynburg, J.P.; Burger, J.F.W.; Young, D.A.; Brandt, E.V.; Steenkamp, J.A.; Ferreira, D. Oligomeric flavanoids. Part 4 Base-catalyzed conversions of (-)-fisetindiol-(+)-catechin profisetinidins with 2,3-trans-3,4-cis-flavan-3-ol constituent units. J. Chem. Soc. Perkin Trans. 1 (in press).Google Scholar
  146. 146.
    Porter, L.J.; Hemingway, R.W. (unpublished results).Google Scholar
  147. 147.
    Barrett, M.W.; Klyne, W.; Scopes, P.M.; Fletcher, A.C.; Porter, L.J.; Haslam E. Plant proanthocyanidins. Part 6. Chiroptical studies. Part 95. Circular dichroism of procyanidins. J. Chem. Soc. Perkin Trans. 1: 2375 (1979).CrossRefGoogle Scholar
  148. 148.
    Botha, J.J.; Young, D.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 1. Stereoselective and stereospecific syntheses of optically pure 4-arylflavan-3-ols, and assessment of their absolute stereochemistry at C-4 by means of circular dichroism. J. Chem. Soc. Perkin Trans. 1: 1213 (1981).CrossRefGoogle Scholar
  149. 149.
    Brandt, E.V.; Young, D.A.; Kolodziej, H.; Ferreira, D.; Roux, D.G. Cycloconformations of two tetraflavanoid profisetinidin condensed tannins. J. Chem. Soc. Chem. Commun.: 913 (1986).Google Scholar
  150. 150.
    Brandt, E.V.; Young, D.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 20. Cycloconformations and conformational stability among derivatives of `angular’ tetraflavanoid profisetinidins. J. Chem. Soc. Perkin Trans. 1: 2353 (1987).CrossRefGoogle Scholar
  151. 151.
    Williams, V.M.; Porter, L.J.; Hemingway, R.W. Molecular weight profiles of proanthocyanidin polymers. Phytochemistry 22: 569 (1983).CrossRefGoogle Scholar
  152. 152.
    Porter, L.J. Number-and weight-average molecular weights for some proanthocyanidin polymers (condensed tannins). Aust. J. Chem. 39: 557 (1986).Google Scholar
  153. 153.
    Morimoto, S.; Nonaka, G.; Nishioka, I. Tannins and related compounds. XXXVIII. Isolation and characterization of flavan-3-ol glucosides and procyanidin oligomers from cassia bark (Cinnamomum cassia Blume). Chem. Pharm. Bull. 34: 633 (1986).CrossRefGoogle Scholar
  154. 154.
    Bergmann, W.R.; Barkley, M.D.; Hemingway, R.W.; Mattice, W.L. Heterogeneous fluorescence decay of 4 6 and 4 8 linked dimers of (+)-catechin and (-)-epicatechin as a result of rotational isomerism. J. Am. Chem. Soc. 109: 6614 (1987).CrossRefGoogle Scholar
  155. 155.
    Cho, D.; Porter, L.J.; Hemingway, R.W.; Mattice, W.L. Fluorescence quantum yields for oligomers of (2R,3S)-[(+)-catechin] and (2R,3R)-[(-)-epicatechin]. Polymer (in press).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Richard W. Hemingway

There are no affiliations available

Personalised recommendations