Advertisement

Inequalities and Monotonicity Properties for Gamma and q-Gamma Functions

  • Mourad E. H. Ismail
  • Martin E. Muldoon
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 119)

Abstract

We prove some new results and unify the proofs of old ones involving complete monotonicity of expressions involving gamma and q-gamma functions, 0 < q < 1. Each of these results implies the infinite divisibility of a related probability measure. In a few cases, we are able to get simple monotonicity without having complete monotonicity. All of the results lead to inequalities for these functions. Many of these were motivated by the bounds in a 1959 paper by Walter Gautschi. We show that some of the bounds can be extended to complex arguments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abramowitz M., Stegun I. A., eds. Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series 55, Washington, 1964.zbMATHGoogle Scholar
  2. [2]
    Alzer H. Some gamma function inequalities. Math. Comp., 60: 337–346, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Andrews G. E. q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Regional Conference Series in Mathematics Number 66, American Mathematical Society, Providence, 1985.Google Scholar
  4. [4]
    Bustoz J., Ismail M. E. H. On gamma function inequalities. Math. Comp., 47: 659–667, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Dubourdieu J. Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace-Stieltjes. Compositio Math., 7: 96–111, 1939 - 40.MathSciNetGoogle Scholar
  6. [6]
    Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G. Higher Transcendental Functions, vol. 1. McGraw-Hill, New York, 1953.Google Scholar
  7. [7]
    Feller W. An Introduction to Probability Theory and its Applications, vol. 2. Wiley, New York, 1966.zbMATHGoogle Scholar
  8. [8]
    Gasper G., Rahman M. Basic Hypergeometric Series. Cambridge University Press, Cambridge, 1990.zbMATHGoogle Scholar
  9. [9]
    Gautschi W. Some elementary inequalities relating to the gamma and incomplete gamma function. J. Math. Phys., 38: 77–81, 1959.MathSciNetzbMATHGoogle Scholar
  10. [10]
    Gautschi W. A harmonic mean inequality for the gamma function. SIAM J. Math. Anal., 5: 278–281, 1974.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Gautschi W. Some mean value inequalities for the gamma function. SIAM J. Math. Anal., 5: 282–292, 1974.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Ismail M. E. H., Lorch L., Muldoon M. E. Completely monotonic functions as-sociated with the gamma function and its q-analogues. J. Math. Anal. Appl., 116: 1–9, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Kershaw D. Some extensions of W. Gautschi’s inequalities for the gamma function. Math. Comp., 41: 607–611, 1983.MathSciNetzbMATHGoogle Scholar
  14. [14]
    Koornwinder T. H. Jacobi functions as limit cases of q-ultraspherical polynomials. J. Math. Anal Appl., 148: 44–54, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    Laforgia A. Further inequalities for the gamma function. Math. Comp., 42: 597–600, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Marshal A. W., Olkin I. Inequalities: Theory of Majorization and Applications. Academic Press, New York, 1979.Google Scholar
  17. [17]
    Mitronović D. S. Analytic Inequalities. Springer-Verlag, Berlin, 1971.Google Scholar
  18. [18]
    Muldoon M. E. Some monotonicity properties and characterizations of the gamma function. Aequationes Math., 18: 54–63, 1978.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Rademacher H. Topics in Analytic Number Theory. Springer-Verlag, Berlin-New York, 1973.zbMATHCrossRefGoogle Scholar
  20. [20]
    Ronning G. On the curvature of the trigamma function. J. Comp. Appl. Math., 15: 397–399, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Widder D. V. The Laplace Transform. Princeton University Press, Princeton, 1941.Google Scholar

Copyright information

© Birkhäuser 1994

Authors and Affiliations

  • Mourad E. H. Ismail
    • 1
  • Martin E. Muldoon
    • 2
  1. 1.Department of MathematicsUniversity of South FloridaTampaUSA
  2. 2.Department of Mathematics and StatisticsYork UniversityNorth YorkCanada

Personalised recommendations