RoManSy 6 pp 107-114 | Cite as

Solving the Inverse Kinematic Problem for Robotic Manipulators

  • L. Sciavicco
  • B. Siciliano

Abstract

Based on a dynamic approach, a general solution algorithm for the inverse kinematic problem for robotic manipulators is presented. It requires only the computation of direct kinematics. Two-stage algorithms are then derived for three basic kinematical structures in order to comply with the mechanical constraints of each structure. Applicability of the algorithm to redundant manipulators with obstacle collision avoidance and limited joint range availability is finally shown.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Denavit and R.S. Hartenberg, “A kinematic notation for lower-pair a.echanisms based on matrices,” J. Appl. Mech.,June 1955.Google Scholar
  2. [2]
    R.P. Paul, B. Shimano and G.E. Meyer, “Kinematic control equations for simple manipulators.” IEEE Trans. Syst., Man, Cybern., vol. 11, no. 6, June 1981.Google Scholar
  3. [3]
    A.A. Goldenberg, B. Benhabib and R.G. Fenton, “A complete generalized solution to the inverse kinematics of robots,” IEEE J. Rob. Autom., vol. 1, no. 1, March 1985.Google Scholar
  4. [4]
    A. Balestrino, G. De Maria and L. Sciavicco, “Robust control of robotic manipulators,” Proc. 9th IFAC World Congress, Budapest, Hungary, July 1984.Google Scholar
  5. [5]
    W.A. Wolovich and H. Elliott, “A computational technique for inverse kinematics,” Proc. 23rd CDC, Las Vegas, NV, Dec. 1984.Google Scholar
  6. [6]
    R.P. Paul, Robot Manipulators: Mathematics, Programming, and Control. Cambridge, MA, MIT Press, 1981.Google Scholar
  7. [7]
    G. De Maria and R. Marino, “A discrete algorithm for solving the inverse kinematic problem for robotic manipulators,” Proc. ‘85 ICAR, Tokyo, Japan, Sept. 1985.Google Scholar
  8. [8]
    A. Balestrino, G. De Maria and L. Sciavicco, “An adaptive model following control for robotic manipulators,” ASME J. Dynamic Syst., Meas., Contr., vol. 105, Sept. 1983.Google Scholar
  9. [9]
    J.Y.S. Luh, “An anatomy of industrial robots and their controls,” IEEE Trans. Autom. Contr., vol. 28, no. 2, Feb. 1983.Google Scholar
  10. [10]
    C.S.G. Lee, “Robot arm kinematics, dynamics, and control,” IEEE Computer, vol. 15, no. 12, Oct. 1982.Google Scholar
  11. [11]
    V.D. Scheinman, “Design of a computer manipulator,” Stanford A.I. Lab, Memo. AIM-92, 1969.Google Scholar
  12. [12]
    G. De Maria, L. Sciavicco and B. Siciliano, “A general solution algorithm to coordinate transformation for robotic manipulators,” Proc. ‘85 ICAR, Tokyo, ’Japan, Sept. 1985.Google Scholar
  13. [13]
    A. Balestrino, G. De Maria, L. Sciavicco and B. Siciliano, “A novel approach to coordinate transformation for robotic manipulators,” IEEE Trans. Syst., Man, Cybern., submitted for publication.Google Scholar
  14. [14]
    L. Sciavicco and B. Siciliano, “Coordinate transformation: a solution algorithm for one class of robots,” IEEE Trans. Syst., Man, Cybern., submitted for publication.Google Scholar
  15. [151.
    L. Sciavicco and H. Siciliano, “An inverse kinematic solution algorithm for robots with two-by-two intersecting axes at the end effector,” Proc. IEEE Int. Conf. Rob. Autom., San Francisco, CA, April 1986.Google Scholar
  16. [16]
    A. Liegeois, “Automatic supervisory control of the configuration and behavior of multibody mechanisms,” IEEE Trans. Syst., Man, Cybern., vol. 7, no. 12, Dec. 1977.Google Scholar
  17. [17]
    C.A. Klein and C.H. Huang, “Review of pseudoinverse control for use with kinematically redundant manipulators,” IEEE Trans. Syst., Man, Cybern., vol. 13, no. 2, Feb. 1983.Google Scholar
  18. [18]
    M. Vukobratovic and M. Kircanski, “A dynamic approach to nominal trajectory synthesis for redundant manipulators,” IEEE Trans. Syst., Man, Cybern., Jan./Feb. 1984.Google Scholar
  19. [19]
    M. Kircanski and M. Vukobratovic, “Trajectory planning for redundant manipulators in the presence of obstacles,” Proc. 5th CISMIFToMM Ro.Man.Sy., Udine, Italy, June 1984.Google Scholar

Copyright information

© Hermes, Paris 1987

Authors and Affiliations

  • L. Sciavicco
    • 1
  • B. Siciliano
    • 1
  1. 1.Dipartimento di Informatica e SistemisticaUniversita’ di NapoliNapoliItaly

Personalised recommendations