Advertisement

Excitatory Amino Acids and Neuroprotection

  • Brian Meldrum
Chapter
Part of the Advances in Neuroprotection book series (AN, volume 22)

Abstract

This chapter reviews approaches to neuroprotection that are based on reducing the excitotoxic effects of glutamate and related compounds. Evidence for a role of excitotoxicity in the brain damage that accompanies cerebral ischemia and trauma has been presented elsewhere (Choi and Rothman, 1990; Meldrum, 1990; Meldrum and Garthwaite, 1990; Olney, 1990) and will not be further reviewed here. Nor shall we provide any review or analysis of the different animal models of cerebral ischemia and trauma in which putative cerebroprotective agents are currently evaluated [these aspects are reviewed by Meldrum, 1990, and in Chapters 3 (Hsu et al.), 4 (Zivin), and 5 (Hayes et al.) of this volume]. Here we shall consider the various pharmacologic options for reducing excitatory effects, reviewing the drugs available for modifying the different stages of the excitotoxic process and the evidence for their cerebroprotective efficacy in animal models.

Keywords

NMDA Receptor Cerebral Ischemia Glutamate Release Excitatory Amino Acid NMDA Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson P, Hajimohammadreza I, Brammer MJ, Campbell I, Meldrum BS (1990): Presynaptic glutamate/quisqualate receptors: Effects on synaptosomal free calcium concentrations. J Neurochem 55: 1850–1854PubMedGoogle Scholar
  2. Andine P, Lehmann A, Ellren K, Wennberg E, Kjellmer I, Nielsen T, Hagberg H (1988): The excitatory amino acid antagonist kynurenic acid administered after hypoxia-ischemia in neonatal rats offers neuroprotection. Neurosci Lett 90: 208–212PubMedGoogle Scholar
  3. Arai A, Kessler M, Lee K, Lynch G (1990): Calpain inhibitors improve the recovery of synaptic transmission from hypoxia in hippocampal slices. Brain Res 532: 63–68PubMedGoogle Scholar
  4. Arvin B, Le Peillet E, Dürmüller N, Chapman AG, Meldrum BS (1992): Electrolytic lesions of the locus coeruleus, or 6-hydroxy dopamine lesions of the medial forebrain bundle protect against excitotoxic damage in rat hippocampus. Brain Res (in press)Google Scholar
  5. Aston-Jones G, Akaoka H, Charléty P, Chouvet G (1991): Serotonin selectively attenuates glutamate-evoked activation of noradrenergic locus coeruleus neurons. J Neurosci 11: 760–769PubMedGoogle Scholar
  6. Beaughard M, Michelin MT, Massingham R (1990): Effects of the putative glycine antagonist HA-966 on the neurological and histological changes induced by transient global cerebral ischemia in rats and gerbils. In: Pharmacology of Cerebral Ischemia 1990, Krieglstein J, Oberpichler H, eds. Stuttgart: Wissenschaftliche Verlagsgesellschaft, p 275Google Scholar
  7. Bielenberg GW, Burkhardt M (1990): 5-HT1A agonists show neuroprotectant activity in rats and mice. Eur J Pharmacol 183: 1953–1954Google Scholar
  8. Block GA, Pulsinelli WA (1988): Excitatory amino acid and purinergic transmitter involvement in ischemia-induced selective neuronal death. In: Mechanisms of Cerebral Hypoxia and Stroke, Somjen G, ed. New York: Plenum Press, p 359Google Scholar
  9. Boast CA, Gerhardt SC, Janak P (1987): Systemic AP7 reduces ischemic brain damage in gerbils. In: Excitatory Amino Acid Transmission, Hicks TP, Lodge D, McLennan H, eds. New York: Alan R. Liss, p 249Google Scholar
  10. Boast CA, Gerhardt SC, Pastor G, Lehmann J, Etienne PE, Liebman JM (1988): The N-methyl-n-aspartate antagonists CGS 19755 and CPP reduce ischemic brain damage in gerbils. Brain Res 442: 345–348PubMedGoogle Scholar
  11. Bode-Greuel KM, Klisch J, Glaser T, Traber J (1990): Serotonin (5-HT) lA receptor agonists as neuroprotective agents in cerebral ischemia. In: Pharmacology of Cerebral Ischemia 1990, Krieglstein J, Oberpichler H, eds. Stuttgart: Wissenschaftliche Verlagsgesellschaft, p 485Google Scholar
  12. Boulter J, Hollmann M, O’Shea-Greenfield A, Hartley M, Deneris E, Maron C, Heinemann S (1990): Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249: 1033–1037ADSPubMedGoogle Scholar
  13. Buchan A, Pulsinelli WA (1990): Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci 10: 311–316PubMedGoogle Scholar
  14. Buchan AM, Li H, Pulsinelli WA (1991): The N-methyl-n-aspartate antagonist, MK-801, fails to protect against neuronal damage caused by transient severe forebrain ischemia in adult rats. J Neurosci 11: 1049–1056PubMedGoogle Scholar
  15. Buchan AM, Xue D, Slivka A (1990): MK-801 reduces the volume of neocortical infarction but also increases regional cerebral blood flow. Stroke 21, 163Google Scholar
  16. Bullock R, Graham DI, Chen M-H, Lowe D, McCulloch J (1990): Focal cerebral ischemia in the cat: Pretreatment with a competitive NMDA receptor antagonist, D-CPPene. J Cereb Blood Flow Metab 10: 668–674Google Scholar
  17. Carter C, Benavides J, Legendre P, Vincent JD, Noel F, Thuret F, Lloyd KG, Arbilla S, Zivkovic B, MacKenzie ET, Scatton B, Langer SZ (1988): Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. II. Evidence for N-methyl-Daspartate receptor antagonist properties. J Pharmacol Exp Ther 247: 1222–1232PubMedGoogle Scholar
  18. Carter CJ, Lloyd KG, Zivkovic B, Scatton B (1990): Ifenprodil and SL 82.0715 as cerebral antiischemic agents. III. Evidence for antagonistic effects at the polyamine modulatory site within the N-methyl-D-aspartate receptor complex. J Pharmacol Exp Ther 253: 475–482PubMedGoogle Scholar
  19. Chapman AG, Dürmüller N, Lees GJ, Meldrum BS (1989): Excitotoxicity of NMDA and kainic acid is modulated by nigrostriatal dopaminergic fibres. Neurosci Lett 107: 256–260PubMedGoogle Scholar
  20. Chapman AG, Meldrum BS (1989): Non-competitive N-methyl-n-aspartate antagonists protect against sound-induced seizures in DBA/2 mice. Eur J Pharmacol 166: 201–211PubMedGoogle Scholar
  21. Choi DW (1990): Cerebral hypoxia: Some new approaches and unanswered questions. J Neurosci 10: 2493–2501PubMedGoogle Scholar
  22. Choi DW, Rothman SM (1990): The role of glutamate neurotoxicity in hypoxicischemic neuronal death. Annu Rev Neurosci 13: 171–182PubMedGoogle Scholar
  23. Diemer NH, Johansen FF, Jorgensen MB (1990): N-Methyl-D-aspartate and nonN-methyl-D-aspartate antagonists in global cerebral ischemia. Stroke 21 (Suppl 3):III39–III42Google Scholar
  24. Duverger D, McKenzie ET (1988): The quantification of cerebral infarction following focal ischemia in the rat: Influence of strain, arterial pressure, blood glucose concentration, and age. J Cereb Blood Flow Metab 8: 449–461Google Scholar
  25. Eaton SA, Salt TE (1989): Modulatory effects of serotonin on excitatory amino acid responses and sensory synaptic transmission in the ventrobasal thalamus. Neuroscience 33: 285–292PubMedGoogle Scholar
  26. Egebjerg J, Bettler B, Hermans-Borgmeyer I, Heinemann S (1991): Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351: 745–748ADSPubMedGoogle Scholar
  27. Faden AI, Demediuk P, Panter SS, Vink R (1989): The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244: 798–800ADSPubMedGoogle Scholar
  28. Faden AI, Simon RP (1988): A potential role for excitotoxins in the pathophys-iology of spinal cord injury. Ann Neurol 23: 623–626PubMedGoogle Scholar
  29. Favaron M, Manev H, Siman R (1990): Down regulation of protein kinase C protects cerebellar granule neurons in primary culture from glutamate-induced neuronal death. Proc Natl Acad Sci USA 87: 1983–1987ADSPubMedGoogle Scholar
  30. Fleischer JE, Tateishi A, Drummond JC, Scheller MS, Grafe MR, Zornow MH, Shearman GT, Shapiro HM (1989): MK-801, an excitatory amino acid antagonist, does not improve neurologic outcome following cardiac arrest in cats. J Cereb Blood Flow Metab 9: 795–804PubMedGoogle Scholar
  31. Forsythe ID, Clements JD (1990): Presynaptic glutamate receptors depress excitatory monosynaptic transmission between mouse hippocampal neurones. JPhysiol (London) 429: 1–16Google Scholar
  32. Foster AC (1991): Channel blocking drugs for the NMDA receptor. In: Excitatory Amino Acid Antagonists, Meldrum BS, ed. Oxford: Blackwell Scientific Publications, p 164Google Scholar
  33. Frandsen A, Schousboe A (1991): Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons. J Neurochem 56: 1075–1078PubMedGoogle Scholar
  34. Gannon RL, Baty LT, Terrian DM (1989): L(+)-2-Amino-4-phosphonobutyrate inhibits the release of both glutamate and dynorphin from guinea pig but not rat hippocampal mossy fiber synaptosomes. Brain Res 495: 151–155PubMedGoogle Scholar
  35. Germano IM, Pitts LH, Meldrum BS, Bartkowski HM, Simon RP (1987): Kynurenate inhibition of cell excitation decreases stroke size and deficits. Ann Neurol 22: 730–734PubMedGoogle Scholar
  36. Gill R, Foster AC, Woodruff GN (1987): Systemic administration of MK-801 protects against ischemia-induced hippocampal neurodegeneration in the gerbil. J Neurosci 7: 3343–3349Google Scholar
  37. Gill R, Foster AC, Woodruff GN (1988): MK-801 is neuroprotective in gerbils when administered during the post-ischemic period. Neuroscience 25: 847–856PubMedGoogle Scholar
  38. Gill R, Lodge D (1991): The neuroprotective action of 2,3-dihydroxy-6-nitro-7sulfamoyl-benzo(F)quinoxaline (NBQX) in a rat focal ischemia model. Brit J Pharmacol 102: 61 PGoogle Scholar
  39. Globus MYT, Ginsberg MD, Dietrich WD, Busto R, Scheinberg P (1987): Sub-stantia nigra lesion protects against ischemic damage in the striatum. Neurosci Lett 80: 251–256PubMedGoogle Scholar
  40. Gotti B, Benavides J, MacKenzie ET, Scatton B (1990): The pharmacotherapy of focal cortical ischemia in the mouse. Brain Res 522: 290–307PubMedGoogle Scholar
  41. Gotti B, Duverger D, Bertin J, Carter C, Dupont R, Frost J, Gaudilliere B, MacKenzie ET, Rousseau J, Scatton B, Wick A (1988): Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. I. Evidence for efficacy in models of focal cerebral ischemia. J Pharmacol Exp Ther 247: 1211–1221PubMedGoogle Scholar
  42. Grotta JC (1987): Current medical and surgical therapy for cerebrovascular disease. N Engl J Med 317: 1505–1516PubMedGoogle Scholar
  43. Grotta JC, Picone CM, Ostrow PT, Strong RA, Earls RM, Yao LP, Rhoades HM, Dedman JR (1990): CGS-19755, a competitive NMDA receptor antagonist, reduces calcium-calmodulin binding and improves outcome after global cerebral ischemia. Ann Neurol 27: 612–619PubMedGoogle Scholar
  44. Gustafson I, Miyauchi Y, Wieloch TW (1989): Postischemic administration of idazoxan, an a-2 adrenergic receptor antagonist, decreases neuronal damage in the rat brain. J Cereb Blood Flow Metab 9: 171–174PubMedGoogle Scholar
  45. Hagberg H, Andine P, Fredholm B, Rudolphi K (1990): Effect of the adenosine uptake inhibitor propentofylline on extracellular adenosine and glutamate and evaluation of its neuroprotective effect after ischemia in neonatal and adult rats. In: Pharmacology of Cerebral Ischemia 1990, Krieglstein J, Oberpichler H, eds. Stuttgart: Wissenschaftliche Verlagsgesellschaft, p 427Google Scholar
  46. Hall ED, Pazara KE (1988): Quantitative analysis of effects of kappa-opioid agonists and post-ischemic hippocampal CA1 neuronal necrosis in gerbils. Stroke 19: 1008–1012PubMedGoogle Scholar
  47. Hatfield RH, Mendelow AD, Alvares L (1990): Triphenyltetrazolium chloride (TTC) as a marker of ischemic changes in rat brain after MCA occlusion. J Neurol Neurosurg Psychiatry 53: 446Google Scholar
  48. Honoré T, Davies SN, Drejer J, Fletcher EJ, Jacobsen P, Lodge D, Nielsen FE (1988): Quinoxalinediones: Potent competitive non-NMDA glutamate receptor antagonists. Science 241: 701–703ADSPubMedGoogle Scholar
  49. Ikonomidou C, Price MT, Mosinger JL, Frierdich G, Labruyere J, Shahid Salles K, Olney JW (1989): Hypobaric-ischemic conditions produce glutamate-like cytopathology in infant rat brain. J Neurosci 9: 1693–1700Google Scholar
  50. Keana JFW, McBurney RN, Scherz MW, Fischer JB, Hamilton PN, Smith SM, Server AC, Finkbeiner S, Stevens CF, Jahr C, Weber E (1989): Synthesis and characterization of a series of diarylguanidines that are noncompetitive N-methylD-aspartate receptor antagonists with neuroprotective properties. Proc Natl Acad Sci USA 86: 5631–5635ADSPubMedGoogle Scholar
  51. Keinanen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH (1990): A family of AMPA-selective glutamate receptors. Science 249: 556–560ADSGoogle Scholar
  52. Kirino T, Tamura A, Sano K (1986): A reversible type of neuronal injury following ischemia in the gerbil hippocampus. Stroke 17: 455–459PubMedGoogle Scholar
  53. Kuroiwa T, Bonnekoh P, Hossmann K-A (1990): Therapeutic window of CA1 neuronal damage defined by an ultrashort-acting barbiturate after brain ischemia in gerbils. Stroke 21: 1489–1493PubMedGoogle Scholar
  54. Lanier WL, Perkins WJ, Karlsson BR, Milde JH, Scheithauer BW, Shearman GT, Michenfelder JD (1990): The effects of dizocilpine maleate (MK-801), an antag-onist of the N-methyl-D-aspartate receptor, on neurologic recovery and histopathology following complete cerebral ischemia in primates. J Cereb Blood Flow Metab 10: 252–261PubMedGoogle Scholar
  55. Lee KS, Frank S, Vanderklish P, Arai A, Lynch G (1991): Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc Natl Acad Sci USA 88: 7233–7237ADSPubMedGoogle Scholar
  56. Leach MJ, Marden CM, Miller AA (1986): Pharmacological studies on lamotrigine, a novel potential antiepileptic drug. II. Neurochemical studies on the mechanism of action. Epilepsia 27: 490–497PubMedGoogle Scholar
  57. Le Peillet E, Arvin B, Moncada C, Meldrum BS (1992): The non-NMDA antagonists, NBQX and GYKI 52466, protect against cortical and striatal cell loss following transient global ischaemia in the rat. Brain Res 571: 115–120PubMedGoogle Scholar
  58. Lester RA, Jahr CE (1990): Quisqualate receptor-mediated depression of calcium currents in hippocampal neurons. Neuron 4: 741–749PubMedGoogle Scholar
  59. Levine S (1960): Anoxic-ischemic encephalopathy in rats. Am J Pathol 36: 1–17PubMedPubMedCentralGoogle Scholar
  60. Liman ER, Knapp AG, Dowling JE (1989): Enhancement of kainate-gated currents in retinal horizontal cells by cyclic AMP-dependent protein kinase. Brain Res 481: 399–402PubMedGoogle Scholar
  61. Lin B, Dietrich WD, Busto R, Ginsberg MD (1990): (s)-Emopamil protects against global ischemic brain injury in rats. Stroke 21: 1734–1739PubMedPubMedCentralGoogle Scholar
  62. Madden KP, Clark WM, Kochhar A, Zivin JA (1991): Effect of protein kinase C modulation on outcome of experimental CNS ischemia. Brain Res 547: 193–198PubMedGoogle Scholar
  63. Malenka RC, Madison DV, Nicoll RA (1986): Potentiation of synaptic transmission in the hippocampus by phorbol esters. Nature 321: 175–177ADSPubMedGoogle Scholar
  64. Manev H, Favaron M, Vicini S, Guidotti A, Costa E (1990): Glutamate-induced neuronal death in primary cultures of cerebellar granule cells: Protection by synthetic derivatives of endogenous sphingolipids. J Pharmacol Exp Ther 252: 419–427PubMedPubMedCentralGoogle Scholar
  65. Marchi M, Bocchieri P, Garbarino L, Raiteri M (1989): Muscarinic inhibition of endogenous glutamate release from rat hippocampus synaptosomes. Neurosci Lett 96: 229–234PubMedGoogle Scholar
  66. Markwell MAK, Berger SP, Paul SM (1990): The polyamine synthesis inhibitor a-difluoromethylornithine blocks NMDA-induced neurotoxicity. Eur J Pharmacol 182: 607–609PubMedGoogle Scholar
  67. Martin D, Bustos GA, Bowe MA, Bray SD, Nadler JV (1991): Autoreceptor regulation of glutamate and aspartate release from slices of the hippocampal CA1 area. J Neurochem 56: 1647–1655PubMedGoogle Scholar
  68. Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S (1991): Sequence and expression of a metabotropic glutamate receptor. Nature 349: 760–765ADSPubMedGoogle Scholar
  69. Mayer ML (1991): Physiology and biophysics of the NMDA receptor channel complex. In: Excitatory Amino Acid Antagonists, Meldrum BS, ed, p. 64. Blackwell Scientific Publications, OxfordGoogle Scholar
  70. McDonald JW, Silverstein FS, Johnston MV (1987): MK-801 protects the neonatal brain from hypoxic-ischemic damage. Eur J Pharmacol 140: 359–361PubMedGoogle Scholar
  71. Meldrum BS (1990): Protection against ischemic neuronal damage by drugs acting on excitatory neurotransmission. Cerebrovasc Brain Metab Rev 2: 27–57Google Scholar
  72. Meldrum BS, ed (1991): Excitatory Amino Acid Antagonists Oxford: Blackwell Scientific PublicationsGoogle Scholar
  73. Meldrum BS, Garthwaite J (1990): Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 11: 379–387Google Scholar
  74. Meldrum BS, Swan JH, Leach MJ, Millan MH, Gwinn R, Kadota K, Graham SH, Chen J, Simon RP (1992): Reduction of glutamate release and protection against ischemic brain damage by BW 1003C87. Brain Res (in press)Google Scholar
  75. Meldrum BS, Swan JH, Millan MH, Leach MJ, Gwinn R, Kadota K, Graham SH, Simon RP (1991): A pyrimidine derivative, BW 1003C87, decreases glutamate release and protects against ischemic damage. In: The Role of Neurotransmitters in Brain Injury, Dietrich WD, Globus M Y-T, eds. New York: Plenum Publishing Corporation (in press)Google Scholar
  76. Michenfelder JD, Lanier WL, Scheithauer BW, Perkins WJ, Shearman GT, Milde JH (1989): Evaluation of the glutamate antagonist dizocilipine maleate (MK-801) on neurologic outcome in a canine model of complete cerebral ischemia: correlation with hippocampal histopathology. Brain Res 481: 228–234PubMedGoogle Scholar
  77. Miyamoto M, Coyle JT (1990): Idebenone attenuates neuronal degeneration induced by intrastriatal injection of excitotoxins. Exp Neurol 108, 38–45PubMedGoogle Scholar
  78. Miyamoto M, Murphy TH, Sartre A, Schnaar RL, Coyle JT (1989): Antioxidants protect against glutamate-induced cytotoxicity in a neuronal cell line. J Pharmacol Exp Ther 250: 1132–1140PubMedGoogle Scholar
  79. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991): Molecular cloning and characterization of the rat NMDA receptor. Nature 354: 31–37ADSPubMedGoogle Scholar
  80. Mouradian RD, Sessler FM, Waterhouse BD (1991): Noradrenergic potentiation of excitatory transmitter action in cerebrocortical slices: Evidence for mediation by an alpha, receptor-linked second messenger pathway. Brain Res 546: 83–95PubMedGoogle Scholar
  81. Mulder AH, Burger DM, Wardeh G, Hogenboom F, Frankhuyzen AL (1991): Pharmacological profile of various kappa-agonists at kappa-, mu-and deltaopioid receptors mediating presynaptic inhibition of neurotransmitter release in the rat brain. Br J Pharmacol 102: 518–522PubMedPubMedCentralGoogle Scholar
  82. Nicholls D, Attwell D (1990): The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11: 462–467Google Scholar
  83. Nichols RA, Sihra TS, Czernik AJ, Nairn AC, Greengard P (1990): Calcium/ calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes. Nature 343: 647–651ADSPubMedGoogle Scholar
  84. Nuglisch J, Karkoutly C, Peruche B, Prehn JHM, Welsch M, Mennel HD, Rossberg C, Krieglstein J (1990): Effect of the 5-HT 1A-agonist CM57493 on infarct area, infarct volume and hippocampal neuronal damage after focal and global cerebral ischemia in mice and in rats. In: Pharmacology of Cerebral Ischemia 1990, Krieglstein J, Oberpichler H, eds. Stuttgart: Wissenschaftliche Verlagsgesellschaft, p 493Google Scholar
  85. Olney JW (1990): Excitotoxic amino acids and neuropsychiatric disorders. Annu Rev Pharmacol Toxicol 30: 47–71PubMedGoogle Scholar
  86. Olney JW, Ikonomidou C, Mosinger JL, Friedrich G (1989): MK-801 prevents hypobaric-ischemic neuronal degeneration in infant rat brain. J Neurosci 9: 1701–1704PubMedGoogle Scholar
  87. Ouardouz M, Durand J (1991): GYKI 52466 antagonizes glutamate responses but not NMDA and kainate responses in rat abducens motoneurones. Neurosci Lett 125: 5–8PubMedGoogle Scholar
  88. Ozyurt E, Graham DI, Woodruff GN, McCulloch J (1988): Protective effect of the glutamate antagonist, MK-801 in focal cerebral ischemia in the cat. J Cereb Blood Flow Metab 8: 138–143Google Scholar
  89. Palfreyman MG, Baron BM (1991): Non-competitive NMDA antagonists acting on the glycine site. In: Excitatory Amino Acid Antagonists, Meldrum BS, ed. Oxford: Blackwell Scientific Publications, p 101Google Scholar
  90. Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J (1988a): The glutamate antagonist MK-801 reduces focal ischemic damage in the rat. Ann Neurol24, 543–551Google Scholar
  91. Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J (1988b): Focal cerebral ischemia in the cat: treatment with the glutamate antagonist MK-801 after induction of ischemia. J Cereb Blood Flow Metab 8: 757–762PubMedGoogle Scholar
  92. Paschen W, Rohn G, Meese CO, Pjunicie B, Schmidt-Kastner R (1991): Polyamine metabolism in reversible cerebral ischemia: Effects of a-difluoromethylornithine. Brain Res 453: 9–16Google Scholar
  93. Pellegrini-Giampietro DE, Cherici G, Alesiani M, Carla V, Moroni F (1990): Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J Neurosci 10: 1035–1041PubMedGoogle Scholar
  94. Phillis JW, Walter GA, Simpson RE (1991): Brain adenosine and transmitter amino acid release from the ischemic rat cerebral cortex: Effects of the adenosine deaminase inhibitor deoxycoformycin. J Neurochem 56: 644–650PubMedGoogle Scholar
  95. Prince DA, Feeser HR (1988): Dextromethorphan protects against cerebral infarc-tion in a rat model of hypoxia-ischemia. Neurosci Lett 85: 291–296Google Scholar
  96. Rice JE, Vannucci RC, Brierley JB (1981): The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9: 131–141PubMedGoogle Scholar
  97. Rod MR, Auer RN (1989): Pre-and post-ischemic administration of dizocilpine (MK-801) reduces cerebral necrosis in the rat. Can J Neurol Sci 16: 340–344PubMedGoogle Scholar
  98. Roman R, Bartkowski H, Simon R (1989): The specific NMDA receptor antagonist AP-7 attenuates focal ischemic brain injury. Neurosci Lett 104: 19–24PubMedGoogle Scholar
  99. Seren MS, Rubini R, Lazzaro A, Zanoni R, Fiori MG, Leon A (1990): Protective effects of a monosialoganglioside derivative following transitory forebrain ischemia in rats. Stroke 21: 1607–1612PubMedGoogle Scholar
  100. Seubert P, Lee K, Lynch G (1989): Ischemia triggers NMDA receptor-linked cytoskeletal proteolysis in hippocampus. Brain Res 492: 366–370PubMedGoogle Scholar
  101. Sheardown MJ, Nielsen EO, Hansen AJ, Jacobsen P, Honoré T (1990): 2,3Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: A neuroprotectant for cerebral ischemia. Science 247: 571–574ADSGoogle Scholar
  102. Silvia RC, Slizgi GR, Ludens JH, Tang AH (1987): Protection from ischemia-induced cerebral edema in the rat by U-50488H, a kappa opioid receptor agonist. Brain Res 403: 52–57PubMedGoogle Scholar
  103. Siman R (1990): Role of calpain I in excitatory amino acid-induced degenerative structural changes. In: Neurotoxicity of Excitatory Amino Acids, Guidotti A, ed. New York: Raven Press, p 145Google Scholar
  104. Siman R, Noszek JC, Kegerise C (1989): Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neurosci 9: 1579–1590PubMedGoogle Scholar
  105. Simmonds MA, Horne AL (1988): Barbiturates and excitatory amino acid interactions. In: Excitatory Amino Acids in Health and Disease, Lodge D, ed. Chichester: John Wiley & Sons, p 219Google Scholar
  106. Swan JH, Evans MC, Meldrum BS (1988): Long-term development of selective neuronal loss and the mechanism of protection by 2-amino-7-phosphonoheptanoate in a rat model of incomplete forebrain ischemia. J Cereb Blood Flow Metab 8: 64–78PubMedGoogle Scholar
  107. Swan JH, Meldrum BS (1990): Protection by NMDA antagonists against selective cell loss following transient ischemia. J Cereb Blood Flow Metab 10: 343–351PubMedGoogle Scholar
  108. Takata Y, Ozawa J, Kato H (1991): A selective effect of protein kinase C activators on noradrenaline release compared with subsequent contraction in canine isolated saphenous veins. Brit J Pharmacol 102: 955–961Google Scholar
  109. Tarnawa I, Engberg I, Flatman JA (1990): GYKI 52466, an inhibitor of spinal reflexes is a potent quiqualate antagonist. In: Amino Acids. Chemistry, Biology, and Medicine, Lubec G, Rosenthal GA, eds. Leiden: Escom, p 538Google Scholar
  110. Turner JP, Meldrum BS (1991): L-Glutamate diethyl ester and deaminated analogues as excitatory amino acid antagonists in rat cerebral cortex. Brit J Pharmacol 104: 445–451Google Scholar
  111. Warner MA, Nadler JV, Crain BJ (1990): Effects of NMDA receptor antagonists and body temperature in the gerbil carotid occlusion model of transient forebrain ischemia. In: Current and Future Trends in Anticonvulsant Anxiety and Stroke Therapy, Meldrum BS, Williams M, eds. New York: Alan R. LissGoogle Scholar
  112. Watkins JC (1991): Structure/activity relations of competitive NMDA receptor antagonists. In: Excitatory Amino Acid Antagonists, Meldrum BS, ed. Oxford: Blackwell Scientific Publications, p 84Google Scholar
  113. Watkins JC, Evans RH (1981): Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21: 165–204PubMedGoogle Scholar
  114. Wong RKS (1990): Intracellular Ca2+: Glutamate-induced elevation and role as a messenger in hippocampal pyramidal cells. In: Neurotoxicity of Excitatory Amino Acids, Guidotti A, ed. New York: Raven Press, p 19Google Scholar
  115. Wood PL, Emmett MR, Rao TS, Cler J, Mick S, Iyengar S (1990): Inhibition of nitric oxide synthase blocks N-methyl-D-aspartate-, quisqualate-, kainate-, harmaline-, and pentylenetetrazole-dependent increases in cerebellar cyclic GMP in vivo. J Neurochem 55: 346–348PubMedGoogle Scholar
  116. Wroblewski JT, Blaker WD, Meek JL (1985): Ornithine as a precursor of neurotransmitter glutamate: Effect of canaline on ornithine aminotransferase activity and glutamate content in the septum of rat brain. Brain Res 329: 161–168PubMedGoogle Scholar
  117. Xiang J-Z, Adamson P, Brammer MJ, Campbell IC (1990): The kappa-opiate agonist U50488H decreases the entry of 45Ca into rat cortical synaptosomes by inhibiting N- but not L-type calcium channels. Neuropharmacology 29: 439–444PubMedGoogle Scholar
  118. Xiang J-Z, Brammer MJ, Campbell IC (1991): Quisqualate and carbachol-induced increases in intrasynaptosomal free calcium are mediated by different products of phospholipid hydrolysis. Mol Pharmacol 207: 93–100Google Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • Brian Meldrum

There are no affiliations available

Personalised recommendations