Molecular Characterization of Plasma Membrane Calcium Pump Isoforms

  • Emanuel E. Strehler
  • Roger Heim
  • Ernesto Carafoli
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 307)


The ability to precisely control the free intracellular Ca2+ concentration is of utmost importance for eukaryotic cell function. Membrane-intrinsic transport systems play an essential role in this intracellular Ca2+ regulation (1). Among the Ca2+ transport system of the plasma membrane, ATP-driven Ca2+ pumps have attracted increasing attention over the past few years. Because of their very low abundance (≤0.1% of the total membrane protein) these enzymes have traditionally been difficult to study on a biochemical level. In this situation, however, human red blood cells have proved to be an invaluable source for the analysis and the purification of these molecules. This is mainly due to the absence in mature human erythrocytes of an extensive intracellular membrane network as well as to the easy availability of large quantities of these cells. The rapid accumulation of molecular details concerning the regulation, structure and function of plasma membrane Ca2+ pumps has thus been largely due to the development of an efficient purification procedure for this enzyme from human erythrocytes (2), and to the recent success in the application of refined methods of protein biochemistry and recombinant DNA technology (3). In this report we shall begin with a brief summary of the general characteristics of typical plasma membrane Ca2+ pumps and will then describe the recent advances made in the molecular characterization of these enzymes. Particular attention will be paid to the molecular genetic basis of isoform diversity and to comparative aspects of their structural, functional and regulatory properties.


Human Erythrocyte Calcium Pump cAMP Dependent Phosphorylation Complete Primary Structure Total Membrane Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Carafoli, Intracellular calcium homeostasis, Annu. Rev.Biochem. 56:395 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    V. Niggli, J. T. Penniston and E. Carafoli, Purification of the (Ca2+ Mg2+ ) ATPase from human erythrocytes using a calmodulin affinity column, J. Biol. Chem. 254:9955 (1979).PubMedGoogle Scholar
  3. 3.
    E. Carafoli, A. K. Verma, P. James, E. Strehler and J. T. Penniston, The calcium pump of the plasma membrane: structure-function relationships, in: “Calcium Protein Signaling”, H. Hidaka ed., Plenum Press, New York (1989).Google Scholar
  4. 4.
    P. L. Pedersen and E. Carafoli, Ion-motive ATPases, Trends in Biochem. Sci. 12:146 (1987).CrossRefGoogle Scholar
  5. 5.
    H. J. Schatzmann, The calcium pump of erythrocytes and other animal cells, in: “Membrane Transport of Calcium”, E. Carafoli ed., Academic Press, London (1982).Google Scholar
  6. 6.
    J. T. Penniston, Plasma membrane Ca2+ pumps, in: “Calcium and Cell function”, N. Y. Cheung ed., Academic Press, New York (1983).Google Scholar
  7. 7.
    E. Carafoli and M. Zurini, The Ca2+-pumping ATPase of plasma membranes. Purification, reconstitution and properties, Biochim. Biophys. Acta Rev. Bioenerg. 683:279 (1982).Google Scholar
  8. 8.
    V. Niggli, E. Sigel and E. Carafoli, The purified Ca 2+ pump of human erythrocyte membranes catalyses an electroneutral Ca2+:H+ exchange in recostituted liposomal systems, J. Biol. Chem. 257:2350 (1982).PubMedGoogle Scholar
  9. 9.
    B. Gassner, S. Luterbacher, H. J. Schatzmann and A. Wüthrich, Dependence of the red blood cell calcium pump on the membrane potential, Cell Calcium 9:95 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    L. Neyses, L. Reinlib and E. Carafoli, Phosphorylation of the Ca2+-pumping ATPase of heart sarcolemma and erythrocyte plasma membrane by the cAMP-dependent protein kinase, J. Biol. Chem. 260:10283 (1985).PubMedGoogle Scholar
  11. 11.
    J. I. Smallwood, B. Gügi and H. Rasmussen, Regulation of erythrocyte Ca2+ pump activity by protein kinase C, J. Biol. Chem. 263:2195 (1988).PubMedGoogle Scholar
  12. 12.
    V. Niggli, E. S. Adunyah and E. Carafoli, Acidic phospholipids, unsaturated fatty acids and proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2+-ATPase, J. Biol. Chem. 256:8588 (1981).PubMedGoogle Scholar
  13. 13.
    K. K. Wang, B. D. Roufogalis and A. Villalobo, Calpain I activates Ca2+ transport by the reconstituted erythrocyte Ca2+ pump J. Membr. Biol. 112:233 (1989).PubMedCrossRefGoogle Scholar
  14. 14.
    C. Robinson, C. Larsson and T. J. Buckhout, Identification of a calmodulin-stimulated (Ca2+-Mg2+)-ATPase in a plasma membrane fractions isolated from maize (Zea mays L.) leaves, Physiol. Plant 72:177 (1988).CrossRefGoogle Scholar
  15. 15.
    J. Ghosh, M. Ray, S. Sarkar and A. Bhaduri, A high affinity Ca2 +-ATPase on the surface membrane of Leishmania donovani promastigote, J. Biol. Chem. 265:11345 (1990).PubMedGoogle Scholar
  16. 16.
    H. K. Rudolph, A. Antebi, G. R. Fink, C. M. Buckley, T. E. Dorman, J. LeVitre, L. S. Davidow, J.-I. Mao and D. T. Moir, The yeast secretary pathway is perturbed by mutations in PMR1, a member of a Ca ATPase family, Cell 58:133 (1989).PubMedCrossRefGoogle Scholar
  17. 17.
    A. G. Filoteo, J. P. Gorski and J. T. Penniston, The ATP-binding site of the erythrocyte membrane Ca2+ pump. Amino acid sequence of the fluorescein isothiocynate-reactive region J. Biol. Chem. 262:6526 (1987).PubMedGoogle Scholar
  18. 18.
    P. James, E. I. Zvaritch, M. I. Shakhparonov, J. T. Penniston and E. Carafoli, The amino acid sequence of the phosphorylation domain of the erythrocyte Ca2+ ATPase, Biochem. Biophys. Res. Commun. 149:7 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    G. E. Shull and J. Greeb, Molecular cloning of two isoforms of the plasma membrane Ca2+-transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+, K+-and other cation transport ATPases, J. Biol. Chem. 263:8646 (1988).PubMedGoogle Scholar
  20. 20.
    A. K. Verma, A. G. Filoteo, D. R. Stanford, E. D. Wieben, J. T. Penniston, E. E. Strehler, R. Fischer, R. Heim, G. Vogel, S. Mathews, M.-A. Strehler-Page, P. James, T. Vorherr, J. Krebs and E. Carafoli, Complete primary structure of a human plasma membrane Ca2+ pump, J. Biol. Chem. 263:14152 (1988).PubMedGoogle Scholar
  21. 21.
    J. Greeb and G. E. Shull, Molecular cloning of a third isoform of the calmodulin-sensitive plasma membrane Ca2+-transporting ATPase that is expressed predominantly in brain and skeletal muscle, J. Biol. Chem. 264:18569 (1989).PubMedGoogle Scholar
  22. 22.
    E. E. Strehler, P. James, R. Fischer, R. Heim, T. Vorherr, A. G. Filoteo, J. T. Penniston and E. Carafoli, Peptide sequence analysis and molecular cloning reveal two calcium pump isoform in the human erythrocyte membrane, J. Biol. Chem. 265:2835 (1990).PubMedGoogle Scholar
  23. 23.
    E. E. Strehler, Recent advances in the molecular characterization of plasma membrane Ca2+ pumps, J. Membr. Biol.: in press.Google Scholar
  24. 24.
    E. E. Strehler, M.-A. Strehler-Page, G. Vogel and E. Carafoli, mRNAs for plasma membrane calcium pump isoforms differing in their regulatory domain are generated by alternative splicing that involves two internal donor sites in a single exon, Proc. Natl. Acad. Sci. USA 86:6908 (1989).PubMedCrossRefGoogle Scholar
  25. 25.
    E. Carafoli, R. Fischer, P. James, J. Krebs, M. Maeda, A. Enyedi, A. Morelli and A. De Flora, The calcium pump of plasma membrane: recent studies on the purified enzyme and on its proteolytic fragments, with particular attention to the calmodulin binding domain, in: “Calcium Binding Proteins in Health and Disease”, A. W. Norman, T. C. Vanaman and A. R. Means, eds., Academic Press, San Diego (1987).Google Scholar
  26. 26.
    P. James, M. Maedda, R. Fischer, A. K. Verma, J. Krebs, J. T. Penniston and E. Carafoli, Identification and primary structure of a calmodulin binding domain of the Ca2+ pump of human erythrocytes, J. Biol. Chem. 263:2905 (1988).PubMedGoogle Scholar
  27. 27.
    P. H. James, M. Pruschy, T. E. Vortherr, J. T. Penniston and E. Carafoli, Primary structure of the cAMP-dependent phosphorylation site of the plasma membrane calcium pump, Biochemistry 28:4253 (1989).PubMedCrossRefGoogle Scholar
  28. 28.
    E. Zvaritch, P. James, T. Vorherr, R. Falchetto, N. Modyanov and E. Carafoli, Mapping of functional domains in the plasma membrane Ca2+ pump using trypsin proteolysis, Biochemistry 29: in press (1990)Google Scholar
  29. 29.
    N. M. Green and D. H. MacLennan, ATP driven ion pumps: an evolutionary mosaic, Biochem. Soc. Trans. 17:819 (1989).PubMedGoogle Scholar
  30. 30.
    P. Brandt, M. Zurini, R. L. Neve, R. E. Rhoads and T. C. Vanaman, A C-terminal, calmodulin-like regulatory domain from the plasma membrane Ca2+-pumping ATPase, Proc. Natl. Acad. Sci. USA 85:2914 (1988).PubMedCrossRefGoogle Scholar
  31. 31.
    N. M. Green, ATP-driven cation pumps: aligment of sequences, Biochem. Soc. Trans. 17:970 (1989).Google Scholar
  32. 32.
    K. Maruyama and D. H. MacLennan, Mutation of aspartic acid-351, lysine-352, and lysine-515 alters the Ca2+ transport activity of the Ca2+-ATPase expressed in CAS-1 cells, Proc. Natl. Acad. Sci. USA 85:3314 (1988).PubMedCrossRefGoogle Scholar
  33. 33.
    D. M. Clarke, T. W. Loo, G. Inesi and D. H. MacLennan, Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase, Nature 339:476 (1989).PubMedCrossRefGoogle Scholar
  34. 34.
    B. Vilsen, J. P. Andersen, D. M. Clarke and D. H. MacLennan, Functional consequences of proline mutations in the cytoplasmic and transmembrane sectors of the Ca2+-ATPase of sarcoplasmic reticulum, J. Biol. Chem. 264:21024 (1989).PubMedGoogle Scholar
  35. 35.
    A. Enyedi, T. Vorherr, P. James, D. J. McCormick, A. G. Filoteo, J. T. Penniston and E. Carafoli, The calmodulin binding domain of the plasma membrane Ca2+ pump interacts with calmodulin and with another part of the pump J. Biol. Chem. 264:12313 (1989).PubMedGoogle Scholar
  36. 36.
    T. Vorherr, P. James, J. Krebs, A. Enyedi, D. J. McCormick, J. T. Penniston and E. Carafoli, Interaction of calmodulin with the calmodulin binding domain of the plasma membrane Ca2+ pump, Biochemistry 29:355 (1990).PubMedCrossRefGoogle Scholar
  37. 37.
    P. James, T. Vorherr, J. Krebs, A. Morelli, G. Castello, D. J. McCormick, J. T. Penniston, A. De Flora and E. Carafoli, Modulation of erythrocyte Ca2+ ATPase by selective calpain cleavage of the calmodulin-binding domain, J. Biol. Chem. 264:8289 (1989).PubMedGoogle Scholar
  38. 38.
    B. Schauder, H. Blocker, R. Frank and J. E. G. McCarthy, Inducible expression vectors incorporating the “Escherichia coli atpE” translational initiation region, Gene 52:279 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Emanuel E. Strehler
    • 1
  • Roger Heim
    • 1
  • Ernesto Carafoli
    • 1
  1. 1.Laboratory for BiochemistrySwiss Federal Institute of Technology (ETH)ZurichSwitzerland

Personalised recommendations