Topological and Functional Analysis of Epitopes on the S(E2) and HE(E3) Glycoproteins of Bovine Enteric Coronavirus

  • J. F. Vautherot
  • M. F. Madelaine
  • J. Laporte
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)


Monoclonal antibodies (Mabs) were selected which reacted with bovine enteric Coronavirus S and HE. Mabs to S were used to identify 2 cleavage products of S, S/gp105 and S/gp90. Monoclonals to S/gp105 and HE neutralised the virus; only Mabs to the latter inhibited haemagglutination and acetyl-esterase activity. Topological distribution of epitopes was studied on these 3 glycoproteins by means of competition binding experiments. Two independent epitopes were characterised on HE, 4 on S/gp105, and 2 on S/gp90. Neutralising Mabs defined one major site on both S/gp105 and HE; however a minor neutralisation epitope was also delineated on S/gp105. Functional mapping using neutralisation-resistant mutants confirmed the topological distribution of epitopes on S/gp105.


Competition Binding Antibody Binding Site Competition Binding Assay Topological Distribution Immune Precipitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L.A. Babiuk, M. Sabara and G.R. Hudson, Rotavirus and Coronavirus infections in animals, Progress in Veterinary Microbiology and Immunology 1: 80–120 (1985).PubMedGoogle Scholar
  2. 2.
    E. Takahashi, Y. Inaba, K. Sato, Y. Ito, H. Kurogi, H. Akashi, K. Satoda and T. Omori, Epizootic dirhoea of adult cattle associated with a coronavirus-like agent,.Vet.Microbiol. 5:151–154 (1980).CrossRefGoogle Scholar
  3. 3.
    J. Laporte and P. Bobulesco, Polypeptide structure of bovine enteric Coronavirus : comparison between a wild strain purified from feces and a HRT 18 cell-adapted strain,Biochemistry and Biology of Coronaviruses, V. ter Meulen, S. Siddel and H. Wege ed., Plenum Publishing Corp.,New-York (1981).Google Scholar
  4. 4.
    B. King and D.A. Brian, Bovine Coronavirus structural proteins, J. Virol. 42(2): 700 (1982).PubMedGoogle Scholar
  5. 5.
    D.Deregt, M. Sabara and L.A. Babiuk, Structural proteins of bovine Coronavirus and their intracellular processing, J. Gen. Virol. 68: 2863–2877 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    J.F. Vautherot, J. Laporte, M.F. Madelaine, P. Bobulesco and A. Roseto, Antigenic and Polypeptide structure of bovine enteric Coronavirus as defined by monoclonal antibodies,Molecular Biology and Pathogenesis of Coronavirus P.J.M. Rottier, B.A.M. van der Zeijst and W.J.M. Spaan,ed., Plenum Publishing Corp., New-York (1984).Google Scholar
  7. 7.
    D. Deregt and L.A. Babiuk, Monoclonaml antibodies to bovine Coronavirus : Characteristics and topographical mapping of neutralising epitopes on the E2 and E3 glycoproteins, Virology 161:410–420 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    B. King, B.J. Potts and D.A. Brian, Bovine Coronavirus hemagglutinin protein, Virus Research 2:53–59 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    M.D. Parker, G.J. Cox, D. Deregt, D.R. Fitzpatrick and L.A. Babiuk, Cloning and in-vitro expression of the gene for the E3 haemagglutinin glycoprotein of bovine Coronavirus, J. Gen. Virol. 70: 155–164 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    R. Vlasak, W. Luytjes, J. Leider, W. Spaan and P. Palese, The E3 protein of bovine Coronavirus is a receptor-destroying enzyme with acetylesterase activity, J. Virol.62(12): 4686–4690 (1988).PubMedGoogle Scholar
  11. 11.
    J.F. Vautherot and J. Laporte, Utilization of monoclonal antibodies for antigenic characterization of coronaviruses, Ann. Rech. Vet. 14(4): 437–444 (1983).PubMedGoogle Scholar
  12. 12.
    J.F. Vautherot, Plaque assay for titration of bovine enteric Coronavirus, J. Gen. Virol. 56: 451–455 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    B. Delmas, J. Gelfi and H. Laude, Antigenic structure of transmissible gastroenteritis virus : II. Domains in the peplomer glycoprotein, J. Gen. Virol. 67:1405–1418 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    H.Laude, J.M. Chapsal, J. Gelfi, S. Labiau and J. Grosclaude, Antigenic structure of transmissible gastro-enteritis virus . I. Properties of monoclonal antibodies directed against virion proteins, J. Gen. Virol. 67:119–130 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    H. Towbin, T. Staehelin and J. Gordon, Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets : procedure and some applications, P.N.A.S. 76(9): 4350–4353 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Avrameas and T. Terninck, Peroxidase-labelled antibody and Fab conjugates with enhanced intracellular penetration, Immunochemistry 8:1175–1179 (1971).PubMedCrossRefGoogle Scholar
  17. 17.
    J.L. Guesdon, T. Terninck and S. Avrameas, The use of Avidin Biotin interaction in immunoenzymatic techniques, J. Histochem. Cytochem. 27:1131–1139 (1979).PubMedCrossRefGoogle Scholar
  18. 18.
    H. Wege, R. Dörries and A. Wege, Hybridoma antibodies to the murine Coronavirus JHM : Characterization of epitopes on the peplomer protein (E2), J. Gen. Virol. 65:1931–1942 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    W. Luytjes, D. Geerts, W. Posthumus, R. Meloen and W. Spaan, Amino-acid sequence of a conserved neutralizing epitope of murine coronavirus.J. Virol. 63:1408–1412 (1989).PubMedGoogle Scholar
  20. 20.
    A.P.A. Mockett, D. Cavanagh and T.D.K. Brown, Monoclonal antibodies to the S1 spike and membrane proteins of avian infectious bronchitis Coronavirus strain Massachusets M41, J. Gen. Virol. 65:2281–2286 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. F. Vautherot
    • 1
  • M. F. Madelaine
    • 1
  • J. Laporte
    • 1
  1. 1.Laboratoire de Virologie et d’lmmunologie Moléculaires. C.R.J.J.I.N.R.A.Jouy-en-JosasFrance

Personalised recommendations