Can Plant RNA Viruses Exchange Genetic Material?

  • Jean-Christophe Boyer
  • Marie-Dominique Morch
  • Anne-Lise Haenni
Part of the NATO ASI Series book series (NATO ASI, volume 169)


The problem of the exchange of genetic material among viruses is intimately related to that of the evolution of these viruses, as are also the acquisition or the loss of genetic material. Similarly, the concept of virus evolution is associated with that of the origin of viruses.


Influenza Virus Plant Virus Barley Yellow Dwarf Virus Virus Family Sindbis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahlquist, P., French, R., and Bujarski, J. J., 1987, Molecular studies of brome mosaic virus using infectious transcripts from cloned cDNA, Adv. Virus Res. 32:215–242.PubMedCrossRefGoogle Scholar
  2. Ahlquist, P., Strauss, E. G., Rice, C. M., Strauss, J. H., Haseloff, J., and Zimmern, D., 1985, Sindbis virus proteins nsP1 and nsP2 contain homology to nonstructural proteins from several RNA plant viruses, J. Virol. 53:536–542.PubMedGoogle Scholar
  3. Air, G. M., and Laver, W. G., 1986, The molecular basis of antigenic variation in influenza virus, Adv. Virus Res. 31:53–102.PubMedCrossRefGoogle Scholar
  4. Angenent, G. C., Linthorst, H. J. M., Van Belkum, A. F., Cornelissen, B. J. C., and Bol, J. F., 1986, RNA 2 of tobacco rattle virus strain TCM encodes an unexpected gene, Nucl. Acids Res. 14:4673–4682.PubMedCrossRefGoogle Scholar
  5. Argos, P., 1981, Secondary structure prediction of plant virus coat proteins, Virology 110:55–62.PubMedCrossRefGoogle Scholar
  6. Argos, P., Kamer, G., Nicklin, M. J. H., and Wimmer, E., 1984, Similarity in gene organization and homology between proteins of animal picornaviruses and a plant comovirus suggest common ancestry of these virus families, Nucl. Acids Res. 12:7251–7267.PubMedCrossRefGoogle Scholar
  7. Bishop, J.M., 1983, Cellular oncogenes and retroviruses, Ann. Rev. Biochem. 52:301–354.PubMedCrossRefGoogle Scholar
  8. Blok, J., Gibbs, A., and Mackenzie, A., 1987, The classification of tymoviruses by cDNA-RNA hybridization and other measures of relatedness, Arch. Virol. 96:225–240.PubMedCrossRefGoogle Scholar
  9. Botstein, D., 1980, A theory of modular evolution for bacteriophages, Ann. N. Y. Acad. Sci. 354:484–491.PubMedCrossRefGoogle Scholar
  10. Bruening, G., 1977, Plant covirus systems: two-component systems, in: “Comprehensive Virology”, H. Fraenkel-Conrat, and R. R. Wagner, eds., Plenum Press, New York, vol. 11, pp. 55–141.Google Scholar
  11. Bujarski, J. J., and Kaesberg, P., 1986, Genetic recombination between RNA components of a multipartite plant virus, Nature 321:528–531.PubMedCrossRefGoogle Scholar
  12. Cave, D. R., Hendrickson, F. M., and Huang, A. S., 1985, Defective interfering virus particles modulate virulence, J. Virol. 55:366–373.PubMedGoogle Scholar
  13. Cornelissen, B. J. C., Linthorst, H., J., M., Brederode, F., Th., and Bol, J. F., 1986, Analysis of the genome structure of tobacco rattle virus strain PSG, Nucl. Acids Res. 14:2157–2169.PubMedCrossRefGoogle Scholar
  14. DePolo, N. J., Giachetti, C., and Holland, J. J., 1987, Continuing coevolution of virus and defective interfering particles and of viral genome sequences during undiluted passages: virus mutants exhibiting nearly complete resistance to formely dominant defective interfering particles, J. Virol. 61:454–464.PubMedGoogle Scholar
  15. Domier, L. L., Shaw, J. G., and Rhoads, R. E., 1987, Potyviral proteins share amino acid sequence homology with picorna-, como-and caulimoviral proteins, Virology 158:20–27.PubMedCrossRefGoogle Scholar
  16. Emerson, S. U. and Schubert, M., 1987, Molecular basis of rhabdovirus replication, inThe Molecular Basis of Viral Replication”, R. Perez Bercoff, ed., Plenum Press, New York, London, pp. 255–276.CrossRefGoogle Scholar
  17. Fields, S., and Winter, G., 1982, Nucleotide sequences of influenza virus segments 1 and 3 reveal mosaic structure of a small viral RNA segment, Cell 28:303–313.PubMedCrossRefGoogle Scholar
  18. Francki, R. I. B., 1985, Plant virus satellites, Ann. Rev. Microbiol. 39:151–174.CrossRefGoogle Scholar
  19. Fuller, S. D., and Argos, P., 1987, Is Sindbis a simple picornavirus with an envelope?, EMBO J. 6:1099–1105.PubMedGoogle Scholar
  20. Gibbs, A., 1987, Molecular evolution of viruses; ‘trees’, ‘clocks’ and ‘modules’, J. Cell. Sci. Suppl. 7:319–337.PubMedGoogle Scholar
  21. Goldbach, R. W., 1986, Molecular evolution of plant RNA viruses, Ann. Rev. Phytopathol. 24:289–310.CrossRefGoogle Scholar
  22. Goldbach, R., and Wellink, J., 1988, Evolution of plus-strand RNA viruses, Intervirology, submitted for publication.Google Scholar
  23. Gorbalenya, A. E., Blinov, V. M., and Donchenko, A.P., 1986, Poliovirus-encoded proteinase 3C: a possible evolutionary link between cellular serine and cysteine proteinase families, FEBS Lett. 194:253–257.PubMedCrossRefGoogle Scholar
  24. Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P., and Blinov, V. M., 1988a, A novel superfamily of nucleoside triphosphate-binding motif containing proteins which are probably involved in duplex unwinding in DNA and RNA replication and recombination, FEBS Lett. 235:16–24.PubMedCrossRefGoogle Scholar
  25. Gorbalenya, A. E., Blinov, V. M., Donchenko, A. P., and Koonin, E. V., 1988b, An NTP-binding motif is the most conserved sequence in a highly diverged monophyletic group of proteins involved in positive strand RNA viral replication, J. Mol. Evol., in press.Google Scholar
  26. Grantham, R., Gautier, C., Gouy, M., Jacobzone, M., and Mercier, R., 1981, Codon catalog usage is a genome strategy modulated for gene expressivity, Nucl. Acids Res. 9:r43–r74.PubMedCrossRefGoogle Scholar
  27. Hahn, C. S., Lustig, S., Strauss, E. G., and Strauss, J. H., 1988, Western equine encephalitis virus is a recombinant virus, Proc. Natl. Acad. Sci. USA, 85:5997–6001.PubMedCrossRefGoogle Scholar
  28. Hillman, B. I., Carrington, J. C., and Morris, T. J., 1987, A defective interfering RNA that contains a mosaic of a plant virus genome, Cell 51:427–433.PubMedCrossRefGoogle Scholar
  29. Hirst, G. K., 1962, Genetic recombination with Newcastle disease virus, polioviruses and influenza, Cold Spring Harbor Symp. Quant. Biol. 27:303–309.PubMedCrossRefGoogle Scholar
  30. Hiruki, C., 1987, The dianthoviruses: a distinct group of isometric plant viruses with bipartite genome, Adv. Virus Res. 33:257–300.PubMedCrossRefGoogle Scholar
  31. Hodgman, T. C., 1988, A new superfamily of replicative proteins, Nature 333:578.CrossRefGoogle Scholar
  32. Hodgman, T. C., and Zimmern, D., 1988, Evolution of RNA viruses, in: “RNA Genetics”, J. Holland, E. Domingo, and P. Ahlquist, eds., CRC Press, Boca Raton, Fla., in press.Google Scholar
  33. Holland, J. J., Kennedy, S. I. T., Semler, B. L., Jones, C. L., Roux, L. and Grabau, E. A., 1980, Defective interfering RNA viruses and host-cell response, in: “Comprehensive Virology”, H. Fraenkel-Conrat and R. R. Wagner, eds., Plenum Press, New York, vol. 16, pp. 137–192.CrossRefGoogle Scholar
  34. Holland, J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S., and VandePol, S., 1982, Rapid evolution of RNA genomes, Science 215:1577–1585.PubMedCrossRefGoogle Scholar
  35. Horiuchi, K., 1975, Genetic studies of RNA phages, in: “RNA Phages”, N. D. Zinder, ed., Cold Spring Harbor Laboratory, New York, pp. 29–50.Google Scholar
  36. Jennings, P.A., Finch, J.T., Winter, G., and Robertson, J.S., 1983, Does the higher order structure of the influenza virus ribonucleoprotein guide sequence rearrangements in influenza viral RNA?, Cell 34:619–627.PubMedCrossRefGoogle Scholar
  37. Joshi, R. L., Joshi, S., Chapeville, F., and Haenni, A.L., 1983a, Primary and secondary structures of the tRNA-like regions of the genomes of plant RNA viruses, in: “Endocytobiology II”, H. E. A. Schenk, and W. Schwemmler, eds., Walter de Gruyter, Berlin, pp. 57–68.Google Scholar
  38. Joshi, S., Joshi, R.L., Haenni, A.L., and Chapeville, F., 1983b, tRNA-like structures in genomic RNAs of plant viruses, Trends Biochem. Sci. 8:402–404.CrossRefGoogle Scholar
  39. Kamer, G., and Argos, P., 1984, Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses, Nucl. Acids Res. 12:7269–7282.PubMedCrossRefGoogle Scholar
  40. Keck, J. G., Matsushima, G. K., Makino, S., Fleming, J. O., Vannier, D. M., Stohlman, S. A., and Lai, M. M. C., 1988, In vivo RNA-RNA recombination of coronavirus in mouse brain, J. Virol. 62:1810–1813.PubMedGoogle Scholar
  41. King, A. M. Q., McCahon, D., Slade, W. R., and Newman, J. W. I., 1982, Recombination in RNA, Cell 29:921–928.PubMedCrossRefGoogle Scholar
  42. King, A. M. Q., Ortlepp, S. A., Newman, J. W. I., and McCahon, D., 1987, Genetic recombination in RNA viruses, in: “The Molecular Biology of the Positive Strand RNA Viruses”, D. J. Rowlands, M. A. Mayo, and B. W. J. Mahy, eds., Academic Press, London, pp. 129–152.Google Scholar
  43. Kirkegaard, K., and Baltimore, D., 1986, The mechanism of RNA recombination in poliovirus, Cell 47:433–443.PubMedCrossRefGoogle Scholar
  44. Kolakofsky, D., and Roux, L., 1987, The molecular biology of paramyxoviruses, in: “The Molecular Basis of Viral Replication”, R. Perez Bercoff, ed., Plenum Press, New York, London, pp. 277–297.CrossRefGoogle Scholar
  45. Konarska, M. M., Padgett, R. A., and Sharp, P. A., 1985, Trans splicing of mRNA precursors in vitro, Cell 42:165–171.PubMedCrossRefGoogle Scholar
  46. Kuge, S., Saito, I., and Nomoto, A., 1986, Primary structure of poliovirus defective-interfering particle genomes and possible generation mechanisms of the particles, J. Mol. Biol. 192:473–487.PubMedCrossRefGoogle Scholar
  47. Lai, M. M. C., Baric, R. S., Makino, S., Keck, J. G., Egbert, J., Leibowitz, J. L., and Stohlman, S. A., 1985, Recombination between nonsegmented RNA genomes of murine coronaviruses, J. Virol. 56:449–456.PubMedGoogle Scholar
  48. Lane, D., 1988, Enlarged family of putative helicases, Nature 334:478.PubMedCrossRefGoogle Scholar
  49. Lazzarini, R. A., Keene, J. D., and Schubert, M., 1981, The origins of defective interfering particles of the negative-strand RNA viruses, Cell 26:145–154.PubMedCrossRefGoogle Scholar
  50. Ledinko, N., 1963, Genetic recombination with poliovirus type 1. Studies of crosses between a normal horse serum-resistant mutant and several guanidine-resistant mutants of the same strain, Virology 20:107–119.PubMedCrossRefGoogle Scholar
  51. Makino, S., Keck, J. G., Stohlman, S. A., and Lai, M. M. C., 1986a, High-frequency RNA recombination of murine coronaviruses, J. Virol. 57:729–737.PubMedGoogle Scholar
  52. Makino, S., Stohlman, S. A., and Lai, M. M. C., 1986b, Leader sequences of murine coronavirus mRNAs can be freely reassorted: evidence for the role of free leader RNA in transcription, Proc. Natl. Acad. Sci. USA 83:4204–4208.PubMedCrossRefGoogle Scholar
  53. Mayo, M. A., 1987, A comparison of the translation strategies used by bipartite genome, RNA plant viruses, in: “The Molecular Biology of the Positive Strand RNA Viruses”, D. J. Rowlands, M. A. Mayo, and B. W. J. Mahy, eds., Academic Press, London, pp. 177–205.Google Scholar
  54. McCahon, D., and Slade, W. R., 1981, A sensitive method for the detection and isolation of recombinants of foot-and-mouth disease virus, J. gen. Virol. 53:333–342.PubMedCrossRefGoogle Scholar
  55. Miller, W. A., Waterhouse, P. M., and Gerlach, W. L., 1988, Sequence and organization of barley yellow dwarf virus genomic RNA, Nucl. Acids Res. 16:6097–6111.PubMedCrossRefGoogle Scholar
  56. Monroe, S. S., and Schlesinger, S., 1983, RNAs from two independently isolated defective interfering particles of Sindbis virus contain a cellular tRNA sequence at their 5′ ends, Proc. Natl. Acad. Sci. USA 80:3279–3283.PubMedCrossRefGoogle Scholar
  57. Monroe, S. S., and Schlesinger, S., 1984, Common and distinct regions of defective-interfering RNAs of Sindbis virus, J. Virol. 49:825–872.Google Scholar
  58. Morch, M. D., and Haenni, A.L., 1987, Organization of plant virus genomes that comprise a single RNA molecule, in: “The Molecular Biology of the Positive Strand RNA Viruses”, D. J. Rowlands, M. A. Mayo, and B. W. J. Mahy, eds., Academic Press, London, pp. 153–175.Google Scholar
  59. Morch, M. D., Boyer, J. C., and Haenni, A. L., 1988, Overlapping open reading frames revealed by complete nucleotide sequencing of turnip yellow mosaic virus genomic RNA, Nucl. Acids Res. 16:6157–6173.PubMedCrossRefGoogle Scholar
  60. Morch, M. D., Valle, R.P.C., and Haenni, A.L., 1987, Regulation of translation of viral mRNAs, in: “The Molecular Basis of Viral Replication”, R. Perez Bercoff, ed., Plenum Press, New York, London, pp. 113–159.CrossRefGoogle Scholar
  61. Murant, A. F., and Mayo, M. A., 1982, Satellites of plant viruses, Ann. Rev. Phytopathol. 20:49–70.CrossRefGoogle Scholar
  62. Nishihara, T., Mills, D. R., and Kramer, F. R., 1983, Localization of the Qβ replicase recognition site in MDV-1 RNA, J. Biochem. 93:669–674.PubMedCrossRefGoogle Scholar
  63. Perrault, J., 1981, Origin and replication of defective interfering particles, Curr. Top. Microbiol. Immunol. 93:151–207.PubMedCrossRefGoogle Scholar
  64. Plotch, S. J., Bouloy, M., Ulmanen, I., and Krug, R. M., 1981, A unique cap (m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription, Cell 23:847–858.PubMedCrossRefGoogle Scholar
  65. Pringle, C. R., 1965, Evidence of genetic recombination in foot-and-mouth disease virus, Virology 25:48–54.PubMedCrossRefGoogle Scholar
  66. Reanney, D. C., 1982, The evolution of RNA viruses, Ann. Rev. Microbiol. 36:47–73.CrossRefGoogle Scholar
  67. Rossmann, M. G., Arnold, E., Erickson, J. W., Frankenberger, E. A., Griffith, J. P., Hecht, H. J., Johnson, J. E., Kamer, G., Luo, M., Mosser, A. G., Rueckert, R. R., Sherry, B., and Vriend, G., 1985, Structure of a human common cold virus and functional relationship to other picornaviruses, Nature 317:145–153.PubMedCrossRefGoogle Scholar
  68. Simon, A. E., and Howell, S. H., 1986, The virulent satellite RNA of turnip crinkle virus has a major domain homologous to the 3′ end of the helper virus genome, EMBO J. 5:3423–3428.PubMedGoogle Scholar
  69. Söderlund, H., Keränen, S., Lehtovaara, P., Palva, I., Pettersson, R. F., and Kääriäinen, L., 1981, Structural complexity of defective-interfering RNAs of Semliki Forest virus as revealed by analysis of complementary DNA. Nucl. Acids Res. 9:3403–3417.PubMedCrossRefGoogle Scholar
  70. Solnick, D., 1985, Trans splicing of mRNA precursors, Cell 42:157–164.PubMedCrossRefGoogle Scholar
  71. Strauss, J. H., and Strauss, E. G., 1988, Evolution of RNA viruses, Ann. Rev. Microbiol. 42: in press.Google Scholar
  72. Strauss, J. H., Strauss, E. G., Hahn, C. S., Hahn, Y. S., Galler, R., Hardy, W. R., and Rice, C. M., 1987, Replication of alphaviruses and flaviviruses: proteolytic processing of polyproteins, in: “Positive Strand RNA Viruses”, M. A. Brinton, and R. R. Rueckert, eds., Alan R. Liss, Inc., New York, pp. 209–225.Google Scholar
  73. Stollar, V., 1980, Defective interfering alphaviruses, in: “The Togaviruses, Biology, Structure, Replication”, R. W. Schlesinger, ed., Academic Press, New York, pp. 427–457.Google Scholar
  74. Symons, R. H., Haseloff, J., Visvader, J. E., Keese, P., Murphy, P. J., Gordon, K. H. J., and Bruening, G., 1985, On the mechanism of replication of viroids, virusoids and satellite RNAs, in: “Subviral Pathogens of Plants and Animals: Viroids and Prions”, K. Maramorosch, and J. J. McKelvey, eds., Academic Press, New York, pp. 235–263.Google Scholar
  75. Takamatsu, N., Ohno, T., Meshi, T., and Okada, Y., 1983, Molecular cloning and nucleotide sequence of the 30K and the coat protein cistron of TMV (tomato strain) genome, Nucl. Acids Res. 11:3767–3778.PubMedCrossRefGoogle Scholar
  76. Taylor, M., W., and Hershey, H., V., 1987, Viruses: an overview, in: “The Molecular Basis of Viral Replication”, R. Perez Bercoff, ed., Plenum Press, New York, London, pp. 3–23.CrossRefGoogle Scholar
  77. Tsiang, M., Monroe, S.S., and Schlesinger, S., 1985, Studies of defective interfering RNAs of Sindbis virus with and without tRNAAsp sequences at their 5′ termini, J. Virol. 54:38–44.PubMedGoogle Scholar
  78. Tsiang, M., Weiss, B. G., and Schlesinger, S., 1988, Effects of 5′-terminal modifications on the biological activity of defective interfering RNAs of Sindbis virus, J. Virol. 62:47–53.PubMedGoogle Scholar
  79. Van Duin, J., 1988, Single-stranded RNA bacteriophages, in: “The Bacteriophages”, R. Calendar, ed., Plenum Press, New York, vol. 1, pp. 117–167.Google Scholar
  80. Van Vloten-Doting, L., and Jaspars, E. M. J., 1977, Plant covirus systems: three-component systems, in: “Comprehensive Virology”, H. Fraenkel-Conrat, and R. R. Wagner, eds., Plenum Press, New York, vol. 11, pp. 1–53.Google Scholar
  81. Webster, R. G., Laver, W. G., Air, G. M., and Schild, G. C., 1982, Molecular mechanisms of variation in influenza viruses, Nature 296:115–121.PubMedCrossRefGoogle Scholar
  82. Wellink, J., and Van Kammen, A., 1988, Proteases involved in the processing of viral polyproteins, Arch. Virol. 98:1–26.PubMedCrossRefGoogle Scholar
  83. Zimmern, D., 1982, Do viroids and RNA viruses derive from a system that exchanges genetic information between eukaryotic cells?, Trends Biochem. Sci. 7:205–207.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jean-Christophe Boyer
    • 1
  • Marie-Dominique Morch
    • 1
  • Anne-Lise Haenni
    • 1
  1. 1.Institut Jacques MonodParis Cedex 05France

Personalised recommendations