Progress in Polyamine Research pp 411-422

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)

Covalent Polyamine-Protein Conjugates: Analysis and Distribution

  • Simone Beninati
  • J. E. Folk

Abstract

Most suggestions as to the biological functions of the polyamines, putrescine, spermidine, and spermine, are based on the observed noncovalent binding of these polycations to nucleic acids, proteins, and phospholipids.1–3 It was recently shown that polyamines are also present in mammalian tissues and body fluids in covalent association with proteins. Protein modifications in which structural elements of polyamines are involved occur by two pathways. In one of these the amino acid hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] is formed through transfer of the butylamine moiety of spermidine to the ε-amino group of a protein lysine residue and through subsequent hydroxylation.4 In the other polyamines are attached in covalent amide linkage to the γ-carboxyl groups of protein glutamic acid residues. Conjugation of the amines in this manner is catalyzed by transglutaminases, Ca2+ -dependent enzymes which promote exchange of primary amines for ammonia at the carboxamide groups of certain glutaminyl residues.5, 6 A number of transglutaminases have been identified and they are found widely distributed in mammalian cells and in biological fluids.7, 8 These enzymes are responsible for production of ε-(γ-glutamyl)lysine crosslinks that connect protein chains and play a central role in such extracellular events as fibrin clot stabilization and seminal plug formation.7, 8

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. S. Cohen, The functions of the polyamines. Adv. Polyamines Res. 1: 1 (1978).Google Scholar
  2. 2.
    C. W. Tabor and H. Tabor, 1, 4 Diaminobutane (putrescine), spermidine and spermine, Ann. Rev. Biochem. 42: 285 (1976).CrossRefGoogle Scholar
  3. 3.
    G. Scalabrino and M. E. Ferioli, Polyamines in mammalian tumors. Part I, Adv. Cancer. Res. 35: 151 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    M. H. Park, A. Abbruzzese and J. E. Folk, Post-translational formation of hypusine: biogenesis of translation initiation factor eIF-4D, in: “Advances in Post-translational Modifications of Proteins and Ageing”, (V. Zappia, P. Galleti, R. Porta, and F. Wold, eds.) p 633, Plenum Press, London (1988).Google Scholar
  5. 5.
    J. E. Folk, M. H. Park, S. I. Chung, J. Schrode, E. P. Lester and H. L. Cooper, Polyamines as physiological substrates for transglutaminases, J. Biol. Chem. 255: 3695 (1980).PubMedGoogle Scholar
  6. 6.
    H. G. Williams-Ashman and Z. N. Canellakis, Transglutaminase-mediated covalent attachment of polyamines to proteins: mechanisms and potential physiological significance, Physiol. Chem. & Physics 12: 457 (1980).Google Scholar
  7. 7.
    J. E. Folk, Transglutaminases, Ann. Rev. Biochem. 49: 517 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    J. E. Folk and J. S. Finlayson, The ε-(γ-glutamyl)lysine crosslink and the catalytic role of transglutaminases, Adv. Protein Chem. 31: 1 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    R. T. Ambron and L. T. Kremzner, Post-translational modification of neural proteins: evidence for transglutaminase activity in R2, the giant cholinergic neuron of Aplysia, Proc. Natl. Acad. Sci. USA 79: 3442 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    L. Cariello, J. Wilson and L. Lorand, Activation of transglutaminase during embryonic development, Biochemistry 23: 6843 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    S. Beninati, M. Piacentini, M. P. Argento-Ceru’, S. Russo-Caia and F. Autuori, Presence of di-and polyamines covalently bound to protein in rat liver, Biochim. Biophys. Acta 841: 120 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Beninati, N. Martinet, T. Nigra, G. Peck and J. E. Folk, Spermidine as a covalent crosslinking component of normal and psoriatic human cell envelopes, J. Cell Biol. 105: 82a (1987).Google Scholar
  13. 13.
    M. Piacentini and S. Beninati, γ-Glutamylamine derivatives in isolated rat hepatocyte proteins, Biochem. J. 249: 813 (1988).PubMedGoogle Scholar
  14. 14.
    S. Beninati, M. Piacentini, E.R. Cocuzzi, F. Autuori and J. E. Folk, Covalent incorporation of polyamines as γ-glutamyl derivatives into CHO cell protein, Biochim. Biophys. Acta 952: 325 (1988).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Piacentini, N. Martinet, S. Beninati and J. E. Folk, Free and protein-conjugated polyamines in mouse epidermal cells, J. Biol. Chem. 263-3790 (1988).Google Scholar
  16. 16.
    A. G. Loewy, The Nε-(γ-glutamic)lysine crosslink: Method of analysis, occurrence in extracellular and cellular protein, Methods Enzymol. 107: 241 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    M. L. Fink, S. I. Chung and J. E. Folk, γ-Glutamylamine cyclotransferase: specficity toward ε-(L-γ-glutamyl)-L-lysine and related compounds, Proc. Natl. Acad. Sci. USA 77: 4564 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    M. L. Fink and J. E. Folk, γ-Glutamylamine Cyclotransferase (Rabbit Kidney), Methods Enzymol. 44: 347 (1983).CrossRefGoogle Scholar
  19. 19.
    S. Beninati, N. Martinet and J. E. Folk, High-performance liquid Chromatographic method for the determination of ε-(γ-glutamyl)-lysine and mono-and bis-γ-glutamyl derivatives of putrescine and spermidine, J. Chrom. 443: 329 (1988).CrossRefGoogle Scholar
  20. 20.
    G. Allwood, G. L. Asherson, M. J. Davey and P. J. Goodford, The early uptake of radioactive calcium by human lymphocytes treated with phytohaemagglutinin, Immunology 21: 509 (1971).PubMedGoogle Scholar
  21. 21.
    A. Novogrodsky, S. Quittner, A. L. Rubin and K. H. Stenzel, Transglutaminase activity in human lymphocytes: early activation by phytomitogens, Proc. Natl. Acad. Sci. USA 75: 1157 (1978).PubMedCrossRefGoogle Scholar
  22. 22.
    R. H. Fillingame and D. R. Morris, atPolyamine accumulation during lymphocyte transformation and its relation to the synthesis, processing, and accumulation of ribonucleic acid, Biochemistry 12: 4479 (1973).PubMedCrossRefGoogle Scholar
  23. 23.
    M. H. Park, H. L. Cooper and J. E. Folk, Identification of hypusine, an unusual amino acid, in a protein from human lymphocytes and of spermidine as its biosynthetic precursor, Proc. Natl. Acad. Sci. USA 78: 2869 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    H. L. Cooper, M. H. Park, J. E. Folk, B. Safer and R. Braverman, Identification of the hypusine-containing protein Hy+ as translation initiation factor eIF-4D, Proc. Natl. Acad. Sci. USA 80: 1854 (1983).PubMedCrossRefGoogle Scholar
  25. 25.
    A. G. Matolsty and C. A. Balsamo, A study of the components of cornified epithelium of human skin, J. Biophys Biochem. Cytol. 1: 339 (1955).CrossRefGoogle Scholar
  26. 26.
    R. H. Rice and H. Green, The cornified envelope of terminally differentiated human epidermal keratinocytes consists of crosslinked protein. Cell 11: 417 (1977).PubMedCrossRefGoogle Scholar
  27. 27.
    P. Bohlen, J. Grove, M. F. Beya, J. Koch-Weser, M. H. Henry and E. Grosshans, Skin polyamine levels in psoriasis: the effect of dithra-nol therapy, Eur. J. Clin. Invest. 8: 215 (1978).PubMedCrossRefGoogle Scholar
  28. 28.
    P. El Baze, G. Milano, P. Verrando, N. Renee and J. P. Ortonne, Polyamine levels in normal human skin, Arch. Dermatol. Res. 275: 218 (1983).PubMedGoogle Scholar
  29. 29.
    J. Schrode and J. E. Folk, Transglutaminase-catalyzed crosslinking through diamines and polyamines, J. Biol. Chem. 253: 4837 (1978).PubMedGoogle Scholar
  30. 30.
    S. Michel, R. Schmidt, S. M. Robinson and U. Reichert, Morphological and biochemical characterization of the cornified envelopes from human keratinocytes of different origin, J. Invest. Dermatol. 87: 156 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Simone Beninati
    • 1
  • J. E. Folk
    • 1
  1. 1.Laboratory of Cellular Development and OncologyNational Institute of Dental Research, NIHBethesdaUSA

Personalised recommendations