Dynamics of Interactions between Bacteria and Virulent Bacteriophage

  • Richard E. Lenski
Part of the Advances in Microbial Ecology book series (AMIE, volume 10)

Abstract

The interactions of bacteria and their viruses (bacteriophage) are, by and large, ones of trophic exploitation. In fact, “phage” is derived from the Greek word for “devour.” Using the criterion of relative size, the interactions can be defined as parasitism (Bull and Slater, 1982). Because replication by most virulent phage necessarily results in bacterial death, these interactions could also be called predation. Certain interactions could even be termed mutualistic, as some temperate phage encode phenotypic characteristics that are of direct benefit to their hosts. Semantics aside, the fundamental ecological question that I will attempt to address in this chapter is: What role do bacteriophage infections play in limiting the abundance of bacteria?

References

  1. Adams, M. H., 1959,Bacteriophages, Interscience, New York.Google Scholar
  2. Alexander, M., 1981, Why microbial predators and parasites do not eliminate their prey and hosts, Annu. Rev. Microbiol 35:113.PubMedGoogle Scholar
  3. Anderson, E. H., 1946, Growth requirements of virus-resistant mutants of Escherichia coli strain "B," Proc, Natl Acad. Sei. USA 32:120.Google Scholar
  4. Anderson, E. S., 1957, The relations of bacteriophages to bacterial ecology, Symp. Soc. Gen. Microbiol. 7:189.Google Scholar
  5. Anderson, E. S. 1968, The ecology of transferable drug resistance in the Enterobacteria, Annu. Rev. Microbiol 22:131.PubMedGoogle Scholar
  6. Anderson, T. F., 1948, The growth of T2 virus on ultraviolet-killed host cells, J. Bacteriol 56:403.Google Scholar
  7. Arber, W., and Linn, S., 1969, DNA modification and restriction, Annu. Rev. Biochem. 38:467.PubMedGoogle Scholar
  8. Archibald, A. R., 1980, Phage receptors in Gram-positive bacteria, in:Virus Receptors, Part 1, Bacterial Viruses (h. L. Randall and L. Philipson, eds.), pp. 5–26, Chapman and Hall, London.Google Scholar
  9. Bachmann, B. J., and Low, K. B., 1980, Linkage map of Escherichia coli K-12, edition 6, Microbiol. Rev. 44: 1 PubMedGoogle Scholar
  10. Barksdale, L., and Arden, S. B., 1974, Persisting bacteriophage infections, lysogeny, and phage conversions, Annu. Rev. Microbiol. 28:265.PubMedGoogle Scholar
  11. Botstein, D., 1980, A theory of modular evolution for bacteriophages,Ann. N.Y. Acad. Sei. 354:484.Google Scholar
  12. Bradley, D. E., 1967, Ultrastructure of bacteriophages and bacteriocins,Bacteriol. Rev. 31:230.PubMedGoogle Scholar
  13. Braun, V., and Hantke, K., 1977, Bacterial receptors for phages and colicins as constituents of specific transport systems, in: Microbial Interactions (J. L. Reissig, ed.), pp. 99–137, Chapman and Hall, London.Google Scholar
  14. Brinton, C. C., and Beer, H., 1967, The interaction of male-specific bacteriophages with F pili, in: The Molecular Biology of Viruses (J. S. Colter and W. Paranchych, eds.), pp. 251–289, Academic Press, New York.Google Scholar
  15. Bronson, M. J., and Levine, M., 1971, Virulent mutants of bacteriophage P22. L Isolation and genetic analysis, J. Virol. 7:559.PubMedGoogle Scholar
  16. Bull, A. T., and Slater, J. H., 1982, Microbial interactions and community structure, in: Microbial Interactions and Communities, Volume 1 (A. T. Bull and J. H. Slater, eds.), pp. 13–44, Academic Press, London.Google Scholar
  17. Campbell, A. M., 1961, Conditions for the existence of bacteriophage, Evolution 15:153.Google Scholar
  18. Campbell, A., and Botstein, D., 1983, Evolution of the lambdoid phages, in: Lambda II (R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg, eds.), pp. 365–380, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  19. Chao, L., Levin, B. R., and Stewart, F. M., 1977, A complex community in a simple habitat: An experimental study with bacteria and phage. Ecology 58:369.Google Scholar
  20. Crawford, J. T., and Goldberg, E. B., 1977, The effect of baseplate mutations on the requirement for tail-fiber binding for irreversible adsorption of bacteriophage T4, J. Mol. Biol. 111:305.PubMedGoogle Scholar
  21. DeBach, P., 1971, The use of imported natural enemies in insect pest management ecology, Proc. Tall Timbers Conf. 3:211.Google Scholar
  22. DeBach, P., 1974, Biological Control by Natural Enemies, Cambridge University Press, Cambridge.Google Scholar
  23. Delbrück, M., 1940a, Adsorption of bacteriophages under various physiological conditions of the host, J. Gen. Physiol. 23:631.PubMedGoogle Scholar
  24. Delbrück, M., 1940b, The growth of bacteriophage and lysis of the host, J. Gen. Physiol. 23:643.PubMedGoogle Scholar
  25. Delbrück, M., and Luria, S. E., 1942, Interference between bacterial viruses. 1. Interference between two bacterial viruses acting upon the same host, and the mechanism of virus growth.Arch. Biochem. 1:111.Google Scholar
  26. Demerec, M., and Fano, U., 1945, Bacteriophage-resistant mutants in Escherichia coli. Genetics 30:119.PubMedGoogle Scholar
  27. d’Herelle, F., 1922, The Bacteriophage: Its Role in Immunity, Williams and Wilkins, Baltimore.Google Scholar
  28. Dhillon, T. S., Chan, Y. S., Sun, S. M., and Chau, W. S., 1970, Distribution of coliphages in Hong Kong sewage, Appl. Microbiol. 20:187.PubMedGoogle Scholar
  29. Dhillon, T. S., Dhillon, E. K. S., Chau, H. C, Li, W. K., and Tsang, A. H. C., 1976, Studies on bacteriophage distribution: Virulent and temperate bacteriophage content of mammalian feces, Appl. Environ. Microbiol. 32:68.PubMedGoogle Scholar
  30. Doermann, A. H., 1948, Lysis and lysis inhibition with Escherichia coli bacteriophage, J. Bacteriol. 55:257.Google Scholar
  31. Duckworth, D. H., 1970, Biological activity of bacteriophage ghosts and "takeover" of host functions by bacteriophage, Bacteriol. Rev. 34:344.PubMedGoogle Scholar
  32. Duckworth, D. H., 1976, Who discovered bacteriophage?, Bacteriol Rev. 40:793.PubMedGoogle Scholar
  33. Duckworth, D. H., Glenn, J., and McCorquodale, D. J., 1981, Inhibition of bacteriophage replication by extrachromosomal elements, Microbiol. Rev. 45:52.PubMedGoogle Scholar
  34. Dunn, G. B., and Duckworth, D. H., 1977, Inactivation of receptors for bacteriophage T5 during infection of Escherichia coli B, J. Virol 24:419.PubMedGoogle Scholar
  35. Dykhuizen, D. E., and Hartl, D. L., 1983, Selection in chemostats, Microbiol. Rev. 47:150.PubMedGoogle Scholar
  36. Echols, H., 1972, Developmental pathways for the temperate phage: Lysis vs. lysogeny, Annu. Rev. Genet. 6:157.PubMedGoogle Scholar
  37. Ellis, E. L., and Delbrück, M., 1939, The growth of bacteriophage, J. Gen. Physiol. 22:365.PubMedGoogle Scholar
  38. Emslie-Smith, A. H., 1961, Observations on the secular succession of types of Escherichia coli and related organisms in the faecal flora of an adult human subject, J. Appl. Bacteriol. 24:vii.Google Scholar
  39. Falkow, S., 1975, Infectious Multiple Drug Resistance, Pion, London.Google Scholar
  40. Eraser, D. K., 1957, Host range mutants and semitemperate mutants of bacteriophage T3, Virology 3:527.Google Scholar
  41. Freeman, V. J., 1951, Studies on the virulence of bacteriophage infected strains of Coryne bacterium diphtheriae, J. Bacteriol. 61:675.Google Scholar
  42. Furuse, K., Osawa, S., Kawashiro, J., Tanaka, R., Ozawa, A., Sawamura, S., Yanagawa, Y. Nagao, T., and Watanabe, I., 1983, Bacteriophage distribution in human faeces: Con tinuous survey of healthy subjects and patients with internal and leukaemic diseases J. Gen. Virol. 64:2039.Google Scholar
  43. Goldberg, E., 1980, Bacteriophage nucleic acid penetration, in: Virus Receptors, Part 1, Bac terial Viruses (L. L. Randall and L. Philipson, eds.), pp. 115–141, Chapman and Hall London.Google Scholar
  44. Hendrix, R. W., Roberts, J. W., Stahl, F. W., and Weisberg, R. A. (eds.), 1983, Lambda II, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  45. Hershey, A. D., 1946, Mutation of bacteriophage with respect to type of plaque,Genetics 31:620.Google Scholar
  46. Hershey, A. D., and Rotman, R., 1949, Genetic recombination between host range and plaque-type mutants of bacteriophage in single bacterial cultures. Genetics 34:44.Google Scholar
  47. Hofnung, M., Jezierska, A., and Braun-Breton, C., 1976, lamB mutations in E. coli Kl2: Growth of Lambda host range mutants and effect of nonsense suppressors, Mol. Gen. Genet. 145:207.PubMedGoogle Scholar
  48. Home, M. T., 1970, Coevolution onEscherichia coli and bacteriophages in chemostat culture, Science 168:992.Google Scholar
  49. Howes, W. v., 1965, Effect of glucose on the capacity of Escherichia coli to be infected by a virulent Lambda bacteriophage, J. Bacteriol. 90:1188.PubMedGoogle Scholar
  50. Koerner, J. F., and Snustad, D. P., 1979, Shutoff of host macromolecular synthesis after T- even bacteriophage infection,Microbiol. Rev. 43:199.PubMedGoogle Scholar
  51. Krueger, A. P., 1931, The sorption of bacteriophage by living and dead susceptible bacteria. 1. Equilibrium conditions, J. Gen. Physiol. 14:493.PubMedGoogle Scholar
  52. Kruger, D. H., and Bickle, T. A., 1983, Bacteriophage survival: Multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts, Microbiol. Rev. 47:345.PubMedGoogle Scholar
  53. Kruger, D. H., and Schroeder, C., 1981, Bacteriophage T3 and bacteriophage T7 virus-host cell interactions, Microbiol. Rev. 45:9.PubMedGoogle Scholar
  54. Kubitschek, H. E., 1970,Introduction to Research with Continuous Cultures, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  55. Lenski, R. E., 1984a, Two-step resistance byEscherichia coli B to bacteriophage T2,Genetics 107:1.PubMedGoogle Scholar
  56. Lenski, R. E., 1984b, Coevolution of bacteria and phage: Are there endless cycles of bacterial defenses and phage counterdefenses?, J. Theor. Biol. 108:319.PubMedGoogle Scholar
  57. Lenski, R. E., and Levin, B. R., 1985, Constraints on the coevolution of bacteria and virulent phage: A model, some experiments, and predictions for natural communities, Am. Nat 125:585.Google Scholar
  58. Lerner, F., 1984, Population biology of male-specific bacteriophage, PhD. Dissertation, University of Massachusetts, Amherst.Google Scholar
  59. Levin, B. R., 1981, Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. Genetics 99:1.PubMedGoogle Scholar
  60. Levin, B. R., and Lenski, R. E., 1983, Coevolution in bacteria and their viruses and Plasmids, in: Coevolution (D. J. Futuyma and M. Slatkin, eds.), pp. 99–127, Sinauer, Sunderland, Massachusetts.Google Scholar
  61. Levin, B. R., and Lenski, R. E., 1985, Bacteria and phage: A model system for the study of the ecology and co-evolution of hosts and parasites, in: Ecology and Genetics of Host- Parasite Interactions (D. Rollinson and R. M. Anderson, eds.), pp. 227–242, Academic Press, London.Google Scholar
  62. Levin, B. R., Stewart, F. M., and Chao, L., 1977, Resource-limited growth, competition, and predation: A model and experimental studies with bacteria and bacteriophage, Am. Nat. 111:3.Google Scholar
  63. Levins, R., 1966, The strategy of model building in population biology.Am. Sei. 54:421.Google Scholar
  64. Lewin, B., 1974, Gene Expression, Volume 1, Bacterial Genomes, Wiley, London.Google Scholar
  65. Li, K., Barksdale, L., and Garmise, L., 1961, Phenotypic alterations associated with the bacteriophage carrier state of Shigella dysenteriae, J. Gen. Microbiol. 24:355.Google Scholar
  66. Lotka, A. J., 1925,Elements of Physical Biology, Williams and Wilkins, Baltimore.Google Scholar
  67. Luria, S. E., 1945, Mutations of bacterial viruses affecting their host-range. Genetics 30:84.PubMedGoogle Scholar
  68. Luria, S. E., 1953, Host-induced modifications of viruses, Cold Spring Harbor Symp. Quant. Biol. 18:237.PubMedGoogle Scholar
  69. Luria, S. E., and Delbrück, M., 1943, Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491.PubMedGoogle Scholar
  70. Luria, S. E., and Steiner, D. L., 1954, The role of calcium in the penetration of bacteriophage T5 into its host, J. Bacteriol. 67:635.PubMedGoogle Scholar
  71. Luria, S. E., Darnell, J. E., Jr., Baltimore, D., and Campbell, A., 1978, General Virology, Wiley, New York.Google Scholar
  72. Lwoff, A., 1953, Lysogeny, Bacteriol. Rev. 17:269.PubMedGoogle Scholar
  73. Malmberg, R. L., 1977, The evolution of epistasis and the advantage of recombination in populations of bacteriophage T4, Genetics 86:607.PubMedGoogle Scholar
  74. Manning, P. A., and Reeves, P., 1978, Outer membrane proteins ofEscherichia coli K-12: Isolation of a common receptor protein for bacteriophage T6 and colicin K, Mol. Gen. Genet. 158:279.Google Scholar
  75. Marvin, D. A., and Hohn, B., 1969, Filamentous bacterial viruses, Bacteriol. Rev. 33:172.PubMedGoogle Scholar
  76. Mathews, C. K., Kutter, E. M., Mosig, G., and Berget, P. B. (eds.), 1983, Bacteriophage T4, American Society for Microbiology, Washington, D.C.Google Scholar
  77. May, R. M., 1974,Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, New Jersey.Google Scholar
  78. May, R. M., and Anderson, R. M., 1983, Parasite-host coevolution, in: Coevolution (D. J. Futuyma and M. Slatkin, eds.), pp. 186–206, Sinauer, Sunderland, Massachusetts.Google Scholar
  79. Meselson, M., Yuan, R., and Heywood, J., 1972, Restriction and modification of DNA, Annu. Rev. Biochem. 41:447.PubMedGoogle Scholar
  80. Milch, H., 1978, Phage typing ofEscherichia coli, in: Methods in Microbiology, Volume 11 (T. Bergan and J. R. Norris, eds.), pp. 88–155, Academic Press, London.Google Scholar
  81. Morona, R., and Henning, U., 1984, Host range mutants of bacteriophage Ox2 can use two different outer membrane proteins ofEscherichia coli K-12 as receptors,J. Bacteriol. 159:579.PubMedGoogle Scholar
  82. Morona, R., and Henning, U., 1986. New locus (ttr) inEscherichia coli K-12 affecting sensitivity to bacteriophage T2 and growth on oleate as the sole carbon source, J. Bacteriol. 168:534.PubMedGoogle Scholar
  83. Orpin, C. G., and Munn, E. A., 1974, The occurrence of bacteriophage in the rumen and their influence on rumen bacterial populations, Experientia 30:1018.PubMedGoogle Scholar
  84. Paynter, M. J. B., and Bungay, H. R., Ill, 1969, Dynamics of coliphage infections, in:Fermentation Advances (D. Perlman, ed.), pp. 323–335, Academic Press, New York.Google Scholar
  85. Paynter, M. J. B., and Bungay, H. R., III, 1970, Capsular protection against virulent coliphage infection, BiotechnoL Bioeng. 12:341.PubMedGoogle Scholar
  86. Peitzman, S. J., 1969, Felix d’Herelle and bacteriophage therapy. Trans, Stud. Coll. Physicians Phila. 37:115.Google Scholar
  87. Ptashne, M., Jeffrey, A., Johnson, A. D., Maurer, R., Meyer, B. J., Pabo, C. O., Roberts, T. M., and Sauer, R. T., 1980, How the Lambda repressor and Cro work. Cell 19:1.PubMedGoogle Scholar
  88. Reanney, D., 1976, Extrachromosomal elements as possible agents of adaptation and development, Bacteriol. Rev. 40:552.PubMedGoogle Scholar
  89. Reanney, D. C., and Ackermann, H. W., 1982, Comparative biology and evolution of bacteriophages,Adv. Virol. Res. 27:205.Google Scholar
  90. Reanney, D. C., Gowland, P. C., and Slater, J. H., 1963, Genetic interactions among microbial communities, Symp. Soc. Gen. Microbiol 34:396.Google Scholar
  91. Rodin, S. N., and Ratner, V. A., 1983, Some theoretical aspects of protein coevolution in the ecosystem "phage-bacteria." I. The problem. II. The deterministic model of micro- evolution, J. Theor. Biol. 100:185.Google Scholar
  92. Roper, M. M., and Marshall, K. C, 1974, Modification of the interaction betweenEscherichia coli and bacteriophage in saline sediment, Microb. Ecol. 1:1.Google Scholar
  93. Ryter, A., Shuman, H., and Schwartz, M., 1975, Integration of the receptor for bacteriophage Lambda in the outer membrane of Escherichia coli: Coupling with cell division, J. Bacteriol. 122:295.PubMedGoogle Scholar
  94. Scarpino, P. V., 1978, Bacteriophage indicators, in: Indicators of Viruses in Water and Food (G. Berg, ed.), pp. 201–227, Ann Arbor Science, Ann Arbor, Michigan.Google Scholar
  95. Schlesinger, M., 1932, Ueber die Bindung des bakteriophagen an homologe Bakterien. II. Quantitative Untersuchungen ueber die Bindungsgeschwindigkeit und die Saettigung. [English translation in G. S. Stent (ed.). Papers on Bacterial Viruses, Little and Brown, Boston (1960).]Google Scholar
  96. Schwartz, M., 1976, The adsorption of coliphage Lambda to its host: Effect of variations in the surface density of receptor and in phage-receptor affinity,J. Mol. Biol. 103:521.PubMedGoogle Scholar
  97. Schwartz, M., 1980, Interaction of phages with their receptor proteins, in:Virus Receptors, Part 1, Bacterial Viruses (L. L. Randall and L. Philipson, eds.), pp. 59–94, Chapman and Hall, London.Google Scholar
  98. Shera, G., 1970, Phage treatment of severe burns, Br. Med. J. 1:568.PubMedGoogle Scholar
  99. Smith, F. E., 1972, Spatial heterogeneity, stability, and diversity in ecosystems, in: Growth by Intussusception (E. S. Deevey, ed.), pp. 307–335, Connecticut Academy of Arts and Sciences, New Haven, Connecticut.Google Scholar
  100. Stent, G. S., 1963,Molecular Biology of Bacterial Viruses, Freeman, San Francisco.Google Scholar
  101. Stent, G. S., and Wollman, E. L., 1952, On the two-step nature of bacteriophage adsorption, Biochim. Biophys. Acta 8:260.PubMedGoogle Scholar
  102. Stewart, F. M., and Levin, B. R., 1973, Partitioning of resources and the outcome of interspecific competition: A model and some general considerations. Am. Nat. 107:171.Google Scholar
  103. Stewart, F. M., and Levin, B. R., 1984, The population biology of bacterial viruses: Why be temperate, Theor. Popul. Biol 26:93.PubMedGoogle Scholar
  104. Stone, J. C, Smith, R. D., and Miller, R. C., Jr., 1983, A recombinant DNA plasmid which inhibits bacteriophage T7 reproduction in Escherichia coli, J. Gen. Virol. 64:1615.Google Scholar
  105. Szmelcman, S., and Hofnung, M., 1975, Maltose transport in Escherichia coli K-12: Involvement of the bacteriophage Lambda receptor, J. Bacteriol. 124:112.PubMedGoogle Scholar
  106. Tan, J. S. H., and Reanney, D. C., 1976, Interactions between bacteriophages and bacteria in soil. Soil Biol. Biochem. 8:145.Google Scholar
  107. Vidaver, A. K., 1976, Prospects for control of phytopathogenic bacteria by bacteriophages and bacteriocins, Annu. Rev. Phytopathol. 14:451.Google Scholar
  108. Volterra, V., 1926, Fluctuations in the abundance of a species considered mathematically, Nature 118:558.Google Scholar
  109. Whitehead, H. R., 1953, Bacteriophage in cheese manufacture, BacterioL Rev. 17:109.PubMedGoogle Scholar
  110. Wilkinson, J. F., 1958, The extracellular polysaccharides of bacteria, BacterioL Rev. 22:46.PubMedGoogle Scholar
  111. Williams, F. M., 1972, Mathemetics of microbial populations, with emphasis on open systems, in: Growth by Intussusception (E. S. Deevey, ed.), pp. 395–426, Connecticut Academy of Arts and Sciences, New Haven, Connecticut.Google Scholar
  112. Williams, F. M., 1980, On understanding predator-prey interactions, in: Contemporary Microbial Ecology (D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 349–375, Academic Press, London.Google Scholar
  113. Williams smith, H., 1972, Ampicillin resistance in Escherichia coli by phage infection. Nature 238:205.Google Scholar
  114. Williams smith, H., and Muggins, M. B., 1980, The association of the 018, K1 and H7 antigens and the ColV plasmid of a strain of Escherichia coli with its virulence and immungenicity,J. Gen. Microbiol. 121:387.Google Scholar
  115. Williams smith, H., and Muggins, M. B., 1982, Successful treatment of experimental Escherichia coli infections in mice using phage: Its general superiority over antibiotics, J. Gen. Microbiol. 128:307.Google Scholar
  116. Wright, A., McConnell, M., and Kanegasaki, S., 1980, Lipopolysaccharide as a bacteriophage receptor, in: Virus Receptors, Part 1, Bacterial Viruses (L. L. Randall and L. Philipson, eds.), pp. 27–57, Chapman and Mall, London.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Richard E. Lenski
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations