Skip to main content

A New Glucosylceramidase Activator in Human Placenta

  • Chapter
Enzymes of Lipid Metabolism II

Part of the book series: NATO ASI Series ((NSSA,volume 116))

  • 167 Accesses

Abstract

Natural substrates of many lysosomal hydrolases are highly hydrophobic. While the reactions can proceed in vitro when appropriate detergents are included in the assay mixture, these enzymes must function in vivo without artificial detergents of high concentrations often required for in vitro reactions. Since the first report of an endogenous activator protein for hydrolysis of sulfatide by arylsulfatase A by Mehl and Jatzkewitz (1), so-called natural activator proteins have been described for glucosylceramidase (2–4), GM1-ganglioside β-galactosidase (5,6), GM2-ganglioside N-acetyl-β-galactosaminidase (7,8), sulfatide sulfatase (1,9), and ceramide trihexoside α-galactosidase (10). The physiological significance of at least some of these natural activators has been convincingly indicated by the existence of genetic disorders in which activators are defective, such as GM2-gangliosidosis AB variant (7) or metachromatic leukodystrophy due to activator deficiency (l1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Mehl and H. Jatzkewitz, Eine Cerebrosidsulfatase aus Schweineniere, Hoppe-Seyler’s Z. Physiol. Chem. 339: 260 (1964).

    Article  PubMed  CAS  Google Scholar 

  2. M. W. Ho and J. S. O’Brien, Gaucher’s disease: Deficiency of “acid” 0-glucosidase and reconstitution of enzyme activity in vitro, Proc. Nat. Acad. Sci., U.S.A. 68: 2810 (1971).

    Article  CAS  Google Scholar 

  3. M. W. Ho, J. S. O’Brien, N. S. Radin and J. S. Erickson, Glucocerebrosidase: Reconstitution from macromolecular components, Biochem. J. 131: 173 (1973)

    PubMed  CAS  Google Scholar 

  4. M. W. Ho and N. D. Light, Glucocerebrosidase: Reconstitution from macromolecular components depends on acidic phospholipids, Biochem. J. 136: 821 (1973).

    PubMed  CAS  Google Scholar 

  5. S. C. Li, C. C. Wan, M. Y. Mazzotta, and Y. T. Li, Requirement of an activator for the hydrolysis of sphingoglycolipids by glycosidases of human liver, Carbohydrate Res. 34: 189 (1974).

    Article  CAS  Google Scholar 

  6. S. C. Li and Y. T. Li, An activator stimulating the enzymic hydrolysis of sphingoglycolipids, J. Biol. Chem. 251: 1159 (1976).

    PubMed  CAS  Google Scholar 

  7. E. Conzelmann and K. Sandhoff, AB variant of infantile GM2 gangliosidosis: Deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2, Proc. Nat. Acad. Sci., U.S.A. 75: 3937 (1978).

    Article  Google Scholar 

  8. E. Conzelmann and K. Sandhoff, Purification and characterization of an activator protein for the degradation of glycolipids GM2 and GA2 by hexosaminidase A, Hoppe-Seyler’s Z. Physiol. Chem. 360: 1837 (1979).

    Article  PubMed  CAS  Google Scholar 

  9. H. Jatzkewitz and K. Stinhoff, An activator of cerebroside sulfatase in human normal liver and in cases of congenital metachromatic leukodystrophy, FEBS Lett. 32: 129 (1973).

    Article  PubMed  CAS  Google Scholar 

  10. S. Gârtner, E. Conzelmann and K. Sandhoff, Activator protein for the degradation of globotriaosyl ceramide by human a-galactosidase, J. Biol. Chem. 258: 12378 (1983).

    PubMed  Google Scholar 

  11. R. L. Stevens, A. L. Fluharty, H. Kihara, M. M. Kaback, L. J. Shapiro, B. Marsh, K. Sandhoff and G. Fischer, Cerebroside sulfatase activator deficiency induced metachromatic leukodystrophy, Am. J. Human Genet. 33, 900 (1981).

    CAS  Google Scholar 

  12. P. G. Pentchev and R. O. Brady, The effect of a heat-stable factor in human spleen on glucocerebrosidase and acid β-glucosidase activities, Biochim. Biophys. Acta 297: 491 (1973).

    Article  PubMed  CAS  Google Scholar 

  13. S. P. Peters, C. S. Coffee, R. H. Glew, R. E. Lee, D. A. Wenger, S. C. Li and Y. T. Li, Isolation of heat-stable glucocerebrosidase activators from the spleens of three variants of Gaucher’s disease, Arch. Biochem. Biophys. 183: 290 (1977).

    Article  PubMed  CAS  Google Scholar 

  14. S. P. Peters, P. Coyle, C. S. Coffee, R. H. Glew, M. S. Kuhlenschmidt, L. Rosenfeld and Y. C. Lee, Purification and properties of a heat-stable glucocerebrosidase activating factor from control and Gaucher spleen, J. Biol. Chem. 252: 563 (1977).

    PubMed  CAS  Google Scholar 

  15. S. L. Berent and N. S. Radin, Mechanism of activation of glucocerebrosidase by co-glucosidase (glucosidase activator protein), Biochim. Biophys. Acta 664: 572 (1981).

    Article  PubMed  CAS  Google Scholar 

  16. A. Basu, R. H. Glew, L. B. Daniels and L. S. Clark, Activators of spleen glucocerebrosidase from controls and patients with various forms of Gaucher’s disease, J. Biol. Chem. 259: 1714 (1984).

    PubMed  CAS  Google Scholar 

  17. D. A. Wenger, M. Sattler and S. Roth, A protein activator of galactosylceramide ß-galactosidase, Biochim. Biophys. Acta 712: 639 (1982).

    Article  PubMed  CAS  Google Scholar 

  18. H. Christomanou, Niemann-Pick disease, type C: Evidence for the deficiency of an activating factor stimulating sphingomyelin and glucocerebroside degradation, Hoppe Seyler’s Z. Physiol. Chem. 361: 1489 (1980).

    Article  PubMed  CAS  Google Scholar 

  19. A. M. Vaccaro, M. Muscillo, E. Gallozzi, R. Salvioli, M. Tatti and K. Suzuki, An endogenous activator protein in human placenta for enzymatic degradation of glucosylceramide, Biochim. Biophys. Acta 836: 157 (1985).

    Article  PubMed  CAS  Google Scholar 

  20. M. C. McMaster, Jr. and N. S. Radin, Preparation of [6–3H]gluco-cerebroside, J. Labelled Comp. Radiopharmaceut. 13: 353 (1977).

    Article  CAS  Google Scholar 

  21. N. S. Radin, L. Hof, R. M. Bradley and R. O. Brady, Lactosylceramide galactosidase: Comparison with other sphingolipid hydrolases in developing rat brain, Brain Res. 14: 497 (1969).

    Article  PubMed  CAS  Google Scholar 

  22. K. Suzuki, Globoid cell leukodystrophy (Krabbe disease) and GM1-gangliosidosis, in “Practical Enzymology of the Sphingolipidoses”, R. H. Glew and S. P. Peters, eds., pp. 101–136, Alan R. Liss, New York (1977).

    Google Scholar 

  23. F. S. Furbish, H. E. Blair, J. Shiloach, P. G. Pentchev and R. O. Brady, Enzyme replacement therapy in Gaucher’s disease: Large-scale purification of glucocerebrosidase suitable for human administration, Proc. Nat. Acad. Sci., U.S.A. 74: 3560 (1977).

    Article  CAS  Google Scholar 

  24. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantity of protein utilizing the principle of protein dye binding, Anal. Biochem. 72: 248 (1976).

    Article  PubMed  CAS  Google Scholar 

  25. R. H. Glew and C. S. Coffee, Calmodulin and paralbumin: Activators of human liver glucocerebrosidase, Arch. Biochem. Biophys. 229: 55 (1984).

    Article  PubMed  CAS  Google Scholar 

  26. D. A. Wenger and S. Roth, Homozygote and heterozygote identification, in “Gaucher Disease: A Century of Delineation and Research”, R. J. Desnick, S. Gatt and G. A. Grabowski, eds., pp. 551–572, Alan R. Liss, New York (1982).

    Google Scholar 

  27. S. S. Iyer, S. L. Berent and N. S. Radin, The cohydrolases in human spleen that stimulate glucosyl ceramide β-glucosidase, Biochim. Biophys. Acta 748: 1 (1983).

    Article  PubMed  CAS  Google Scholar 

  28. D. A. Wenger, M. Sattler, C. Clark and C. Wharton, I-Cell disease: Activities of lysosomal enzymes toward natural and synthetic substrates, Life Sci. 19: 413 (1976).

    Article  PubMed  CAS  Google Scholar 

  29. S. P. Peters, P. Coyle and R. H. Glew, Differentiation of β-glucocerebrosidase from β-glucosidase in human tissues using sodium taurocholate, Arch. Biochem. Biophys. 175: 569 (1976).

    Article  PubMed  CAS  Google Scholar 

  30. B. Shafit-Zagardo and B. M. Turner, Human β-glucosidase: Inhibition by sulphates and purification by affinity chromatography on dextran-sulphate-Sepharose, Biochim. Biophys. Acta 659: 7 (1981).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Vaccaro, A.M., Muscillo, M., Gallozzi, E., Salvioli, R., Tatti, M., Suzuki, K. (1986). A New Glucosylceramidase Activator in Human Placenta. In: Freysz, L., Dreyfus, H., Massarelli, R., Gatt, S. (eds) Enzymes of Lipid Metabolism II. NATO ASI Series, vol 116. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5212-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5212-9_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5214-3

  • Online ISBN: 978-1-4684-5212-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics