Theoretical Analysis of Oxygen Supply to Contracted Skeletal Muscle

  • K. Groebe
  • G. Thews
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 200)


During the last years a number of authors, especially HONIG and co-workers, worked on the subject of oxygen supply to skeletal muscle and related topics. Nevertheless, up to date no global theoretical model describing adequately the entire O2 transport process to muscle has been developped,even though most efforts restricted themselves to skeletal muscle, working completely aerobically at maximum O2 uptake (\(\dot V_{O_2 \max }\)), in which all motor units are stimulated at each contraction. Reasons for this dilemma are:
  • Only part of the physiological parameters needed for model calculations have been measured under conditions which were presumed for the model.

  • To yield a complete description, a number of quite heterogeneous and apparently incompatible theories and models from diverse branches of physiology and mathematics have to be integrated, which has not been achieved up to now.


Skeletal Muscle Diffusion Layer Resistance Layer Saturation Time Functional Capillary Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.S. Adair, The hemoglobin system, J. Biol. Chem. 63:529 (1925)Google Scholar
  2. 2.
    K.H. Albrecht, P. Gaehtgens, A. Pries, and M. Heuser, The Fahraeus effect in narrow capillaries (i.d. 3.3 to 11.0 µm), Microvasc. Res. 18:33 (1979)PubMedCrossRefGoogle Scholar
  3. 3.
    P.L. Altman and D.S. Dittmer, “Biology Data Book,” Federation of American Societies for Experimental Biology, Bethesda, (1972)Google Scholar
  4. 4.
    E. Antonini, M. Brunori, “Hemoglobin and Myoglobin in Their Reactions with Ligands,” North-Holland Publishing Company, Amsterdam (1971)Google Scholar
  5. 5.
    P. Brodal, F. Ingjer, and L. Hermansen, Capillary supply of skeletal muscle fibers in untrained and endurancetrained men, Am. J. Physiol. 232:H705 (2977)Google Scholar
  6. 6.
    A. Clark, W.J. Federspiel, P.A.A. Clark, and G.R. Cokelet, Oxygen delivery from red cells, Biophys. J. 47:171 (1985)PubMedCrossRefGoogle Scholar
  7. 7.
    J.T. Coin and J.S. Olson, The rate of oxygen uptake by human red blood cells, J. Biol. Chem. 254:1178 (1979)PubMedGoogle Scholar
  8. 8.
    G.R. Cokelet, Macroscopic rheology and tube flow of human blood, in: “Microcirculation 1,” J. Grayson and W. Zingg, eds., Plenum, New York (1976)Google Scholar
  9. 9.
    R.P. Cole, Myoglobin function in exercising skeletal muscle, Science 216:523 (1982)PubMedCrossRefGoogle Scholar
  10. 10.
    B.R. Duling, Coordination of microcirculatory function with oxygen demand in skeletal muscle, in: “Advances in Physiological Sciences, Vol. 7,” A.G.B. Kovach, J. Hamar, L. Szabó, eds., Pergamon, New York (1981)Google Scholar
  11. 11.
    B.R. Duling, and B. Klitzman, Local control of microvascular function: role in tissue oxygen supply, Ann. Rev. Physiol. 42:373 (1980)CrossRefGoogle Scholar
  12. 12.
    W.N. Duran, Effects of muscle contraction and of adenosin on capillary transport and microvascular flow in dog skeletal muscle, Circ. Res. 41:642 (1977)PubMedGoogle Scholar
  13. 13.
    E. Erikson, and R. Myrhage, Microvascular dimensions and blood flow in skeletal muscle, Acta Physiol. Scand. 86:211 (1972)CrossRefGoogle Scholar
  14. 14.
    R. Fahraeus, The suspension stability of the blood, Physiol. Rev. 9:241 (1929)Google Scholar
  15. 15.
    K. Fronek and B.W. Zweifach, Microvascular blood flow in cat tenuissimus muscle, Microvasc. Res. 14:181 (1977)PubMedCrossRefGoogle Scholar
  16. 16.
    P. Gaehtgens, Mikrozirkulation, in:“Kreislaufphysiologie,” R. Busse, ed., Thieme, Stuttgart (1982)Google Scholar
  17. 17.
    P. Gaehtgens, K.U. Benner, S. Schickendantz, and K.H. Albrecht, Method for simultaneous determination of red cell and plasma flow velocity in vitro and in vivo, Pflügers Arch. 361:191 (1976)PubMedCrossRefGoogle Scholar
  18. 18.
    T.E.J. Gayeski and C.R. Honig, Myoglobin saturation and calculated Poe in single cells of resting gracilis muscles, Adv. Exp. Med. Biol. 94:77 (1978)Google Scholar
  19. 19.
    K.H. Gertz and H.H. Loeschcke, Bestimmung der Diffusions-Koeffizienten von H2, O2, N2 und He in Wasser und Blutserum bei konstant gehaltener Konvektion, Z. Naturforsch. 9b:1 (1954)Google Scholar
  20. 20.
    Q.H. Gibson, The reaction of oxygen with hemoglobin and the kinetic basis of the effect of salt on binding of oxygen, J. Biol. Chem. 245:3285 (1970)PubMedGoogle Scholar
  21. 21.
    T.K. Goldstick, V.T. Ciuryla, and L. Zuckerman, Diffusion of oxygen in plasma and blood, Adv. Exp. Med. Biol. 75:183 (1976)PubMedGoogle Scholar
  22. 22.
    S.D. Gray, E. Carlson, and N.C. Staub, Site of increased vascular resistance during isometric muscle contraction, Am. J. Physiol. 213:683 (1967)PubMedGoogle Scholar
  23. 23.
    J. Grote and G. Thews, Die Bedingungen für die Sauerstoffversorgung des Herzmuskelgewebes, Pflügers Arch. 276:142 (1962)CrossRefGoogle Scholar
  24. 24.
    C.R. Honig, T.E.J. Gayeski, W. Federspiel, A. Clark, and P. Clark, Muscle O2 gradients from hemoglobin to cytochrome: new concepts, new complexities, Adv. Exp. Med. Biol. 169: 23 (1984)PubMedGoogle Scholar
  25. 25.
    C.R. Honig, C.L. Odoroff, and J.L. Frierson, Active and passive capillary control in red muscle at rest and in exercise, Am. J. Physiol. 243:H196 (1982)PubMedGoogle Scholar
  26. 26.
    C.R. Honig and C.L. Odoroff, Calculated dispersion of capillary transit times: significance for oxygen exchange, Am. J. Physiol. 240:H199 (1981)PubMedGoogle Scholar
  27. 27.
    C.R. Honig and T.E.J. Gayeski, Mechanisms of capillary recruitment: relation to flow, tissue Poe and motor unit control of skeletal muscle, in: “Advances in Physiological Sciences, Vol. 8,” A.G.B. Kovach, E. Monos, G. Rubanyi, eds., Pergamon, New York (1981)Google Scholar
  28. 28.
    C.R. Honig, C.L. Odoroff, and J.L. Frierson, Capillary recruitment in exercise: rate, extent, uniformity, and relation to blood flow, Am. J. Physiol. 238:H31 (1980)PubMedGoogle Scholar
  29. 29.
    C.R. Honig, M.L. Feldstein, and J.L. Frierson, Capillary lengths, anastomoses, and estimated capillary transit times in skeletal muscle, Am. J. Physiol. 233:H122 (1977)PubMedGoogle Scholar
  30. 30.
    C.R. Honig, and J. Bourdeau-Martini, Role of 02 in Control of the coronary capillary reserve, Adv. Exp. Med. Biol. 39: 55 (1973)PubMedGoogle Scholar
  31. 31.
    B. Klitzman, A.S. Popel, and B.R. Duling, Oxygen transport in restina and contracting hamster cremaster muscles: experimental and theoretical microvascular studies, Microvasc. 25:108 (1983)CrossRefGoogle Scholar
  32. 32.
    B. Klitzman, and B.R. Duling, Microvascular hematokrit and. red cell flow in resting and contracting striated muscle, Am. J. Physiol. 237:H481 (1979)PubMedGoogle Scholar
  33. 33.
    A. Klug, F. Kreuzer, F.J.W. Roughton, Simultaneous diffusion and chemical reaction in thin layers of haemoglobin solution, Proc. Roy. Soc. B. 145:452 (1956)CrossRefGoogle Scholar
  34. 34.
    J. de Koning, L.J.C. Hoofd, and F. Kreuzer, Oxygen transport and the function of myoglobin, Pflügers Arch. 389:211 (1981)PubMedCrossRefGoogle Scholar
  35. 35.
    F. Kreuzer, and L. Hoofd, Facilitated diffusion of oxygen: possible significance in blood and muscle, Adv. Exp. Med. Biol. 169:3 (1984)PubMedGoogle Scholar
  36. 36.
    F. Kreuzer, and W.Z. Yahr, Influence of red cell membrane on diffusion of oxygen, J. Appl. Physiol. 15:1117 (1960)PubMedGoogle Scholar
  37. 37.
    A. Krogh, The rate of diffusion of gases through animal tissues with some remarks on the coefficient of invasion, J. Physiol.(London) 52:391 (1918–1919 A)Google Scholar
  38. 38.
    H. Kutchai, Numerical study of oxygen uptake by layers of hemoglobin solution, Respir. Physiol. 10:273 (1970)PubMedCrossRefGoogle Scholar
  39. 39.
    D.W. Lubbers, Intercapillärer O2-Transport und intracelluihre Sauerstoffkonzentration, in: “Biochemie des Sauerstoffs,’ B. Hess, and Hj. Staudinger, eds., Springer, Berlin (1968)Google Scholar
  40. 40.
    E.G. Martin, E.C. Woolley, and M. Miller, Capillary counts in resting and active muscles, Am. J. Physiol. 100:407 (1932)Google Scholar
  41. 41.
    M. Mochizuki, A theoretical study on the velocity factor of oxygenation of the red cell, Jpn. J. Physiol. 16:658 (1966)Google Scholar
  42. 42.
    W. Moll, The influence of hemoglobin diffusion on oxygen uptake and release by red cells, Respir. Physiol. 6:1 (1968/ 69)PubMedCrossRefGoogle Scholar
  43. 43.
    W. Moll, The diffusion coefficient of hemoglobin, Respir. Physiol. 1:357 (1966)PubMedCrossRefGoogle Scholar
  44. 44.
    M.J. Plyley, and A.C. Groom, Geometrical distribution of capillaries in mammalian striated muscle, Am. J. Physiol. 228:1376 (1975)PubMedGoogle Scholar
  45. 45.
    A.S. Popel, and J.F. Gross, Analysis of oxygen diffusion from arteriolar networks, Am. J. Physiol, 237:H 681 (1979)Google Scholar
  46. 46.
    R.F. Potter, and A.C. Groom, Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts, Microvasc. Res. 25:68 (1983)PubMedCrossRefGoogle Scholar
  47. 47.
    I.H. Sarelius, and B.R. Duling, Direct measurement of micro-vessel hematocrit, red cell flux, velocity, and transit time, Am. J. Physiol. 243:H1018 (1982)PubMedGoogle Scholar
  48. 48.
    J. Sendroy, R.T. Dillon, and D.D. van Slyke, Studies of gas and electrolyte equilibria in blood, J. Biol. Chem. 105:597 (1934)Google Scholar
  49. 49.
    B.V. Sheth and J.D. Hellums, Transient oxygen transport in hemoglobin layers under conditions of the microcirculation, Ann. Biomed. Eng. 8:183 (1980)PubMedCrossRefGoogle Scholar
  50. 50.
    A.K. Sinha, Oxygen uptake and release by red cells through capillary wall and plasma layer (thesis), San Francisco, CA: University of California, 1969 (University Microfilms International, Ann Arbor, MI)Google Scholar
  51. 51.
    M.C. Starr and W.G. Frasher, In vivo cellular and plasma velocities in microvessels of the cat mesentery, Microvasc. Res. 10:102 (1975)PubMedCrossRefGoogle Scholar
  52. 52.
    M. Steinhausen, H. Tilmanns, and H. Thederan,Microcirculation of the epimyocardial layer of the hart, Pflügers. Arch 378: 9 (1978)PubMedCrossRefGoogle Scholar
  53. 53.
    G. Thews, Oxygen supply to the dynamically working skeletal muscle, in: “Funktionsanalyse biologischer Systeme, Bd. 15,” Akademie der Wissenschaften und der Literatur, Mainz (1985)Google Scholar
  54. 54.
    G. Thews, “Der Atemgastransport bei körperlicher Arbeit,” Funktionsanalyse biologischer Systeme, Bd. 10, Akademie der Wissenschaften und der Literatur, Mainz (1985)Google Scholar
  55. 55.
    G. Thews, Die Sauerstoffdiffusion in den Lungenkapillaren, in: Bad Oyenhausener Gespräche IV, Springer, Berlin (1961)Google Scholar
  56. 56.
    G. Thews, Eine Methode zur mathematischen Behandlung der Sauerstoffdiffusion in hämoglobin- und myoglobininhaltiger Lösung, Naturwissenschaften 43:160 (1956)CrossRefGoogle Scholar
  57. 57.
    P. Vaupel, Effect of percentual water content in tissues and liquids on the diffusion coefficients of Oz, CO2, N2, and H2, Pflügers Arch. 361:201 (1976)PubMedCrossRefGoogle Scholar
  58. 58.
    R. Zander and H. Schmid-Schönhein, Intercellular mechanisms of oxygen transport in flowing blood, Respir. Physiol. 19: 279 (1973)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • K. Groebe
    • 1
  • G. Thews
    • 1
  1. 1.Dept. of PhysiologyUniv. MainzMainzW.-Germany

Personalised recommendations