Regulation of Membrane Fluidity by Lipid Desaturases

  • M. Kates
  • E. L. Pugh
  • G. Ferrante
Part of the Biomembranes book series (B, volume 12)

Abstract

It has long been known that normal prokaryotic as well as eukaryotic cells can grow only when their membrane lipids are largely in the fluid state, i.e., at temperatures above the gel to liquid-crystalline transition temperature (Tm) of their membrane lipids (see McElhaney, this volume). Adaptation of bacteria (Cronan, 1975; Fulco, this volume), yeast (Watson, this volume), fungi (Miller and Barran, this volume), higher plants (Mazliak, 1979), and the protozoan Tetrahymena (Thompson and Nozawa, this volume) to temperatures below their normal growth temperatures generally results in changes in membrane lipid composition leading to increases in fatty acid unsaturation. The major factor affecting the fluidity of membrane lipids in eukaryotes, apart from the presence of cholesterol, is the degree of unsaturation of their fatty acid chains. This holds also for prokaryotes but, in addition, other factors such as chain length and branching may be important.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allmann, D. W., Hubbard, D. D., and Gibson, D. M., 1965, Fatty acid synthesis during fat-free refeeding of starved rats, J. Lipid Res. 6:63.PubMedGoogle Scholar
  2. Baker, N., and Lynen, F., 1971, Factors involved in fatty acyl CoA desaturation by fungal microsomes: Relative role of acyl CoA and phospholipids as substrates, Ear. J. Biochem. 19:200.CrossRefGoogle Scholar
  3. Bloch, K., 1969, Enzymic synthesis of monounsaturated fatty acids, Acc. Chem. Res. 2:193.CrossRefGoogle Scholar
  4. Bloomfield, D. K., and Bloch, K., 1960, The formation of Δ9-unsaturated fatty acids, J. Biol. Chem. 235:337.PubMedGoogle Scholar
  5. Calabro, M. A., Prasad, M. R., Wakil, S. J., and Joshi, V. C, 1982, Stearoyl-coenzyme A desaturase activity in the mammary gland and liver of lactating rats, Lipids 17:397.PubMedCrossRefGoogle Scholar
  6. Cronan, J. E., Jr., 1975, Thermal regulation of the membrane lipid composition of Escherichia coli, J. Biol. Chem. 250:7074.PubMedGoogle Scholar
  7. De Gomez Dumm, I. N. T., de Alaniz, M. J. T., and Brenner, R. R., 1970, Effect of diet on linoleic acid desaturation and on some enzymes of carbohydrate metabolism, J. Lipid Res. 11:96.PubMedGoogle Scholar
  8. Dickens, B. F., and Thompson, G. A., Jr., 1980, Effects of growth at different temperatures on the physical state of lipids in native microsomal membranes of Tetrahymena, Biochemistry 19:5029.PubMedCrossRefGoogle Scholar
  9. Enoch, H. G., Catala, A., and Strittmatter, P., 1976, Mechanism of rat liver microsomal stearyl-CoA desaturase, J. Biol. Chem. 251:5095.PubMedGoogle Scholar
  10. Ferrante, G., and Kates, M., 1983, Pathways for desaturation of oleoyl chains in Candida lipolytica, Can. J. Biochem. Cell Biol. 61:1191.PubMedCrossRefGoogle Scholar
  11. Ferrante, G., Ohno, Y., and Kates, M., 1983, Influence of temperature and growth phase on desaturase activity of the mesophilic yeast Candida lipolytica, Can. J. Biochem. Cell Biol. 61:171.PubMedCrossRefGoogle Scholar
  12. Fukushima, H., Nagao, S., and Nozawa, Y., 1979, Further evidence for changes in the level of palmitoyl-CoA desaturase during thermal adapatation in Tetrahymena pyriformis, Biochim. Biophys. Acta 572:178.PubMedGoogle Scholar
  13. Fulco, A. J., 1972, The biosynthesis of unsaturated fatty acids in bacilli. IV. Temperature-mediated control mechanisms, J. Biol. Chem. 247:3511.PubMedGoogle Scholar
  14. Holloway, C. T., and Holloway, P. W., 1974, Lipid products formed during desaturation of 1-carbon-14-labeled stearyl CoA by hen liver microsomes, Lipids 9:196.PubMedCrossRefGoogle Scholar
  15. Holloway, C. T., and Holloway, P. W., 1977, The dietary regulation of stearyl coenzyme A desaturase activity and membrane fluidity in the rat aorta, Lipids 12:1025PubMedCrossRefGoogle Scholar
  16. Holloway, P. W., 1971, A requirement for three protein components in microsomal stearyl coenzyme A desaturation, Biochemistry 10:1556.PubMedCrossRefGoogle Scholar
  17. Howling, D., Morris, L. J., Gurr, M. I., and James, A. T., 1972, Specificity of fatty acid desaturases and hydroxylases: Dehydrogenation and hydroxylation of monoenoic acids, Biochim, Biophys. Act. 260:10.Google Scholar
  18. Inkpen, C. A., Harris, R. A., and Quackenbush, F. W., 1969, Differential responses to fasting and subsequent feeding by microsomal systems of rat liver: 6-and 9-desaturation of fatty acids, J. Lipid Res. 10:277.PubMedGoogle Scholar
  19. Jeffcoat, R., and James, A. T., 1977, Interrelationship between the dietary regulation of fatty acid synthesis and the fatty acyl-CoA desaturases, Lipids 12:469.PubMedCrossRefGoogle Scholar
  20. Kameyama, Y., Yoshioka, S., and Nozawa, Y., 1980, The occurrence of direct desaturation of phospholipid acyl chain in Tetrahymena pyriformis: Thermal adaptation of membrane phospholipids, Biochim. Biophys. Acta 618:214.PubMedGoogle Scholar
  21. Kasai, R., and Nozawa, Y., 1980, Regulatory mechanism of palmitoyl-CoA desaturase activity in thermal adaptation: Induction in non-growing Tetrahymena cells deprived of preexisting desaturase, Biochim. Biophys. Acta 617:161.PubMedGoogle Scholar
  22. Kates, M., and Ferrante, G., 1982, Metabolism of oleoyl-CoA in cell fractions of soybean cell suspension cultures, in: Biochemistry and Metabolism of Plant Lipids (J. F. G. M. Wintermans and P. J. C. Kuiper, eds.), pp. 21–24, Elsevier, Amsterdam.Google Scholar
  23. Kates, M., and Pugh, E. L., 1980, Role of phospholipid desaturase in control of membrane fluidity, in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 153–170, Humana Press, Clifton, N.J.Google Scholar
  24. Koudelka, A. P., Kambadur, N., Bradley, D. K., and Ferguson, K. A., 1983a, A cytochrome b 5 electron transport chain in Tetrahymena, Biochim. Biophys. Acta 751:121.PubMedGoogle Scholar
  25. Koudelka, A. P., Bradley, D. K., Kambadur, N., and Ferguson, K. A., 1983b, Oleic acid desaturation in Tetrahymena pyriformis, Biochim. Biophys. Acta 751:129.PubMedGoogle Scholar
  26. Lippiello, P. M., Holloway, C. T., Garfield, S. A., and Holloway, P. W., 1979, The effects of estradiol on stearyl-CoA desaturase activity and microsomal membrane properties in rooster liver, J. Biol. Chem. 254:2004.PubMedGoogle Scholar
  27. Mazliak, P., 1979, Temperature regulation of plant fatty acyl desaturase, in: Low Temperature Stress in Crop Plants: The Role of the Membrane (J. M. Lyons, D. Graham, and J. K. Raison, eds.), pp. 391–404, Academic Press, New York.Google Scholar
  28. Nagao, S., Fukushima, H., and Nozawa, Y., 1978, Studies on Tetrahymena membranes: Substrates for desaturation of fatty acyl chains in Tetrahymena pyriformis microsomes, Biochim. Biophys. Acta 530:165.PubMedGoogle Scholar
  29. Nozawa, Y., Iida, H., Fukushima, H., Ohki, K., and Ohnishi, S., 1974, Studies on Tetrahymena membranes: Temperature-induced alterations in fatty acid composition of various membrane fractions in Tetrahymena pyriformis and its effect on membrane fluidity as inferred by spin-label study, Biochim. Biophys. Acta 367:134.PubMedCrossRefGoogle Scholar
  30. Okayasu, T., Nagao, M., Ishibashi, T., and Imai, Y., 1981, Purification and partial characterization of linoleoyl-CoA desaturase from rat liver microsomes, Arch. Biochem. Biophys. 206:21.PubMedCrossRefGoogle Scholar
  31. Oshino, N., and Sato, R., 1972, The dietary control of the microsomal stearyl CoA desaturation enzyme system in rat liver, Arch. Biochem. Biophys. 149:369.PubMedCrossRefGoogle Scholar
  32. Paulsrud, J. R., Stewart, S. E., Graff, G., and Holman, R. T., 1970, Desaturation of saturated fatty acids by rat liver microsomes, Lipids 5:611.PubMedCrossRefGoogle Scholar
  33. Pugh, E. L., and Kates, M., 1973, Desaturation of phosphatidylcholine and phosphatidyle-thanolamine by a microsomal enzyme system in Candida lipolytica, Biochim. Biophys. Acta 316:305.PubMedGoogle Scholar
  34. Pugh, E. L., and Kates, M., 1975, Characterization of a membrane-bound phospholipid desaturase system of Candida lipolytica, Biochim. Biophys. Acta 380:442.PubMedGoogle Scholar
  35. Pugh, E. L., and Kates, M., 1977, Direct desaturation of eicosatrienoyl lecithin to arachidonoyl lecithin by rat liver microsomes, J. Biol. Chem. 252:68.PubMedGoogle Scholar
  36. Pugh, E. L., and Kates, M., 1979, Membrane-bound phospholipid desaturases, Lipids 14:159.PubMedCrossRefGoogle Scholar
  37. Pugh, E. L., and Kates, M., 1984, Dietary regulation of acyltransferase & desaturase activities in rat liver microsomal membranes, Lipids 19:48.PubMedCrossRefGoogle Scholar
  38. Pugh, E. L., Kates, M., and Szabo, A. G., 1980, Fluorescence polarization studies of rat liver microsomes with altered phospholipid desaturase activities, Can. J. Biochem. 58:952.PubMedCrossRefGoogle Scholar
  39. Pugh, E. L., Kates, M., and Szabo, A. G., 1982, Studies on fluorescence polarization of 1-acyl-2-cis-or trans-parinaroyl-sn-3-glycerophosphorylcholines in model systems and microsomal membranes, Chem. Phys. Lipids 30:55.PubMedCrossRefGoogle Scholar
  40. Rochester, C. P., and Bishop, D. G., 1982, Biosynthesis of linoleic acid by cell-free extracts of sunflower seeds, in: Biochemistry and Metabolism of Plant Lipids (J. F. G. M. Wintermans and P. J. C. Kuiper, eds.), pp. 57–60, Elsevier, Amsterdam.Google Scholar
  41. Roughan, P. G., and Slack, C. R., 1982, Cellular organization of glycerolipid metabolism, Annu. Rev. Plant Physiol. 33:97.CrossRefGoogle Scholar
  42. Scott, W. A., 1977a, Unsaturated fatty acid mutants of Neurospora crassa, J. Bacteriol. 130:1144.PubMedGoogle Scholar
  43. Scott, W. A., 1977b, Mutations resulting in an unsaturated fatty acid requirement in Neurospora: Evidence for Δ9-desaturase defects, Biochemistry 16:5274.PubMedCrossRefGoogle Scholar
  44. Shapiro, H., Prescott, D., and Rabinowitz, J. L., 1978, Preliminary characterization of the delta-9 desaturase of Tetrahymena pyriformis W, Comp. Biochem. Physiol. B 61:513.CrossRefGoogle Scholar
  45. Sklar, L. A., Miljanich, G. P., and Dratz, E. A., 1979, Phospholipid lateral phase separation and the partition of cis-parinaric acid and trans-parinaric acid among aqueous, solid lipid and fluid lipid phases, Biochemistry 18:1707.PubMedCrossRefGoogle Scholar
  46. Skriver, L., and Thompson, G. A., Jr., 1979, Temperature-induced changes in fatty acid unsaturation of Tetrahymena membranes do not require induced fatty acid desaturase synthesis, Biochim. Biophys. Acta 572:376.PubMedGoogle Scholar
  47. Slack, C. R., Roughan, P. G., and Browse, J., 1979, Evidence for an oleoyl-phosphatidylcholine desaturase in microsomal preparations from cotyledons of safflower seed, Biochem. J. 179:649.PubMedGoogle Scholar
  48. Sreekrishna, K., Prasad, M. R., Wakil, S. J., and Joshi, V. C, 1981, Interaction of phenols with Δ9 terminal desaturase and other cyanide-sensitive factors in chicken liver microsomes, Biochim. Biophys. Acta 665:427.PubMedGoogle Scholar
  49. Strittmatter, P., Spatz, L., Corcoran, D., Rogers, M. J., Setlow, B., and Redline, R., 1974, Purification and properties of rat liver microsomal stearyl coenzyme A desaturase, Proc. Natl. Acad. Sci. USA 71:4565.PubMedCrossRefGoogle Scholar
  50. Stymne, S., and Appelqvist, L.-A., 1978, The biosynthesis of linoleate from oleoyl-CoA via oleoyl-phosphatidylcholine in microsomes of developing safflower seeds, Eur. J. Biochem. 90:223.PubMedCrossRefGoogle Scholar
  51. Stymne, S., and Glad, G., 1981, Acyl exchange between oleoyl-CoA and phosphatidylcholine in microsomes of developing soya bean cotyledons and its role in fatty acid desaturation, Lipids 16:298.CrossRefGoogle Scholar
  52. Tahin, Q. S., Blum, M., and Carafoli, E., 1981, The fatty acid composition of subcellular membranes of rat liver, heart, and brain: Diet-induced modifications, Eur. J. Biochem. 121:5.PubMedCrossRefGoogle Scholar
  53. Talamo, B., Chang, N., and Bloch, K., 1973, Desaturation of oleyl phospholipid to linoleyl phospholipid in Torulopsis utilis, J. Biol. Chem. 248:2738.PubMedGoogle Scholar
  54. Thompson, G. A., Jr., 1980, Regulation of membrane fluidity during temperature acclimation by Tetrahymena pyriformis, in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 381–397, Humana Press, Clifton, N.J.Google Scholar
  55. Umeki, S., Fukushima, H., Watanabe, T., and Nozawa, Y., 1982, Thermal acclimation mechanisms in Tetrahymena pyriformis: Effects of decreased temperature on microsomal electron transport, Biochem. Int. 4:101.Google Scholar
  56. Wilson, A. C., and Miller, R. W., 1978, Growth temperature-dependent stearoyl-coenzyme-A desaturase activity of Fusarium oxysporum microsomes, Can. J. Biochem. 56:1109.PubMedCrossRefGoogle Scholar
  57. Wilson, A. C., Wakil, S. J., and Joshi, V. C, 1976, Induction of microsomal stearyl coenzyme A desaturase in newly hatched chicks, Arch. Biochem. Biophys. 173:154.PubMedCrossRefGoogle Scholar
  58. Wilson, A. C., Adams, W. C, and Miller, R. W., 1980, Lipid involvement in oleoyl CoA desaturase activity of Fusarium oxysporum microsomes, Can. J. Biochem. 58:97.PubMedGoogle Scholar
  59. Wunderlich, F., Kreutz, W., Mahler, P., Ronai, A., and Heppeler, G., 1978, Thermotropic fluid → ordered “discontinuous” phase separation in microsomal lipids of Tetrahymena: An X-ray diffraction study, Biochemistry 17:2005.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • M. Kates
    • 1
  • E. L. Pugh
    • 1
  • G. Ferrante
    • 1
  1. 1.Department of BiochemistryUniversity of OttawaOttawaCanada

Personalised recommendations