Binaural Interaction Models and Mechanisms

  • H. Steven Colburn
  • Peter J. Moss

Abstract

Binaural interaction models can be developed at the psycho-acoustic level or at the level of a single nerve cell with inputs from both cochleae. Our goal is to encompass both levels of modeling within a single framework, or at least to develop models on both levels that are compatible.

Keywords

Firing Rate Cochlear Nucleus Excitatory Input Inhibitory Input Sound Localization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boudreau, J. C. and Tsuchitani, C., 1970, Cat superior olive Ssegment cell discharge to tonal stimuli, in: “Contributions to sensory physiology, D. Neff, ed., Academic Press, New York.Google Scholar
  2. Colburn, H. S. and Durlach, N. I,, 1978, Models of binaural interaction in: “Hearing”, vol. IV of Handbook of Perception, E. C. Carterette and M. P. Friedman, eds., Academic Press, New York.Google Scholar
  3. Colburn, H. S. and Latimer, J. S., 1978, Theory of binaural interaction based on auditory-nerve data. III. Joint dependence on interaural time and amplitude differences of discrimination and detection, J. Acoust. Soc. Am., 64: 95–106.PubMedCrossRefGoogle Scholar
  4. Fetz, E. E. and Gerstein, G. L., 1963, An RC model for spontaneous activity of single neurons, Quarterly Progres s Report, M. I. T. Research Laboratory of Electronics, 71: 249–257.Google Scholar
  5. Goldberg, J. M. and Brown, P. B., 1968, Functional organization of the dog superior olivary complex: An anatomical and electrophysiological study, J. Neurophysio1., 31: 639–656.Google Scholar
  6. Goldberg, J. M. and Brown, P. B., 1969, Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization, J. Neurophysiol., 32: 613–636.PubMedGoogle Scholar
  7. Goldberg, J. M., 1975, Physiological studies of auditory nuclei of the pons, in: “Handbook of Sensory Physiology”, Vol. V/2, Springer, New York.Google Scholar
  8. Guinan, J. J., Guinan, S. S. and Norris, B. E., 1972, Single auditory units in the superior olivary complex, I. Responses to sounds and classifications based on physiological properties, Intern. J. Ne urosci., 4: 101–120.Google Scholar
  9. Guinan, J. J., Norris, B. E. and Guinan, S. S., 1972, Single auditory units in the superior olivary complex. II. Locations of unit categories and tonotopic organization, Intern. J. Neurosci., 4: 147–166.CrossRefGoogle Scholar
  10. Hausier, R., Marr, E. M. and Colburn, H. S., 1979, Sound localization with impaired hearing, J. Acoust. Soc. Am., 65: S133.CrossRefGoogle Scholar
  11. Jeffress, L. A., 1948, A place theory of sound localization, J. Comp. Physiol. Psychol., 41: 35–39.PubMedCrossRefGoogle Scholar
  12. Masterton, B., Jane, J. A. and Diamond, I. T., 1967, Role of brainstem auditory structures in sound localization. I. Trapezoid body, superior olive, and lateral lemniscus, J. Neuro-physiol., 30: 341–359.Google Scholar
  13. Molnar, C. E. and Pfeiffer, R. R., 1968, Interpretation of spontaneous spike discharge patterns of neurons in the cochlear nucleus, Proc. Inst. Elec. Electron. Engr., 56: 993–1004.Google Scholar
  14. Stein, R. B., 1965, Theoretical analysis of neuronal variability, Biophys. J., 5: 173–194.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • H. Steven Colburn
    • 1
  • Peter J. Moss
    • 1
  1. 1.Research Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations