Liposomes in Drug Targeting

  • G. Gregoriadis
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 31)

Abstract

Transport of drugs to target tissues, cells or subcellular organelles by the use of carrier systems is now a recognized useful method of improving drug selectivity. The types of carrier that have been proposed to date include macromolecules, cells, viruses and synthetic systems (1). However, it is already apparent that most of these are limited in range and quantity of drugs they can accommodate and in their ability to prevent contact of the drug moiety with the normal biological milieu or to promote its access to areas in need of drug action. Further limitations relate to the toxicity of the carrier’s components, their availability and to technical problems such as, for instance, the preparation of the drug-carrier unit. Therefore, extensive efforts have been made towards the development of the ideal drug-carrier (1, 2). As discussed elsewhere (2) such a carrier should be capable of delivering a wide variety of agents into the precise site of action within the biological entity and at the same time provoke no adverse effects. It has become evident during the last decade that liposomes possess many of the qualities expected from a multifunctional carrier and success in applying these to membrane research has now been extended to biology and pharmacology (3, 4).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Drug Carriers in Biology and Medicine (ed., G. Gregoriadis). (1979). Academic Press, London, New York, San Francisco.Google Scholar
  2. 2).
    Gregoriadis, G. (1977). Targeting of drugs. Nature, 265, 407.PubMedCrossRefGoogle Scholar
  3. 3).
    Gregoriadis, G. (1976). The drug-carrier potential of liposomes in Biology and Medicine. New Eng. J. Med., 295, 704.PubMedCrossRefGoogle Scholar
  4. 4).
    Gregoriadis, G. (1976). The drug-carrier potential of liposomes in Biology and Medicine. New Eng. J. Med., 295, 765.PubMedCrossRefGoogle Scholar
  5. 5).
    Bangham, A.D., Standish, M.M. and Watkins, J.C. (1965). Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 13, 238.PubMedCrossRefGoogle Scholar
  6. 6).
    Gregoriadis, G., Leathwood, P.D. and Ryman, B.E. (1971). Enzyme entrapment in liposomes. FEBS Lett., 14, 95.PubMedCrossRefGoogle Scholar
  7. 7).
    Gregoriadis, G. and Ryman, B.E. (1972). Fate of protein containing liposomes injected into rats. An approach to the treatment of storage diseases. Eur. J. Biochem., 24, 485.PubMedCrossRefGoogle Scholar
  8. 8).
    Gregoriadis, G. and Ryman, B.E. (1972). Lysosomal localization of β-fructofuranosidase-containing liposomes injected into rats. Some implications in the treatment of genetic disorders. Biochem. J., 129, 123.PubMedGoogle Scholar
  9. 9).
    Black, C.D.V. and Gregoriadis, G. (1974). Intracellular fate and effect of liposome-entrapped actinomycin D injected into rats. Biochem. Soc. Trans., 2, 869.Google Scholar
  10. 10).
    Gregoriadis, G. and Buckland, R.A. (1973). Enzyme-containing liposomes alleviate a model for storage diseases. Nature, 244, 170.PubMedCrossRefGoogle Scholar
  11. 11).
    Liposomes in Biological Systems (eds., G. Gregoriadis and A.C. Allison) (1980). John Wiley and Sons, Chichester, New York, Brisbane, Toronto.Google Scholar
  12. 12).
    Gregoriadis, G. (1980). The liposome drug-carrier concept: Its development and future. In: “Liposomes in Biological Systems”, (eds., G. Gregoriadis and A.C. Allison), p. 25, John Wiley and Sons, Chichester, New York, Brisbane, Toronto.Google Scholar
  13. 13).
    Tyrrell, D.A., Heath, T.D., Colley, C.M. and Ryman, B.E. (1976). New aspects of liposomes. Biochim. Biophys. Acta, 457, 259.PubMedGoogle Scholar
  14. 14).
    Kimelberg, H.K. and Mayhew, E. (1978). Properties and biological effects of liposomes and their uses in pharmacology and toxicology. In: “CRC Critical Reviews in Toxicology”, (ed., L. Goldberg), p. 25, CRC Press Inc., West Palm Beach, Florida.Google Scholar
  15. 15).
    Juliano, R.L. and Stamp, D. (1975). The effect of particle size and charge on the clearance rates of liposomes and liposome-encapsulated drugs. Biochem. Biophys. Res. Comm, 63, 651.PubMedCrossRefGoogle Scholar
  16. 16).
    Gregoriadis, G., Neerunjun, E.D. and Hunt, R. (1977). Fate of a liposome-associated agent injected into normal and tumour-bearing rodents. Attempts to improve localization in tumour tissues. Life Sci., 21, 357.PubMedCrossRefGoogle Scholar
  17. 17).
    Kimelberg, H.K. (1976). Differential distribution of liposome-entrapped [3H] methotrexate and labelled lipids after intravenous injection in a primate. Biochim. Biophys. Acta, 448, 531.PubMedCrossRefGoogle Scholar
  18. 18).
    Gregoriadis, G. (1973). Drug entrapment in liposomes. FEBS Lett., 36, 292.PubMedCrossRefGoogle Scholar
  19. 19).
    Kimelberg, H.K., Mayhew, E. and Papahadjopoulos, D. (1975). Distribution of liposome-entrapped cations in tumour-bearing mice. Life Sci., 17, 715.PubMedCrossRefGoogle Scholar
  20. 20).
    Zborowski, J., Roerdink, F. and Scherphof, G. (1977). Leakage of sucrose from phosphatidylcholine liposomes induced by interaction with serum albumin. Biochim. Biophys. Acta, 497, 183.PubMedCrossRefGoogle Scholar
  21. 21).
    Gregoriadis, G. and Davis, C. (1979). Stability of liposomes in vivo and in vitro is promoted by their cholesterol content and the presence of blood cells. Biochem. Biophys. Res. Comm., 89, 1287.PubMedCrossRefGoogle Scholar
  22. 22).
    Davis, C. and Gregoriadis, G. (1979). The effect of lipid composition of liposomes on their stability in vivo. Biochem. Soc. Trans., 7, 680.PubMedGoogle Scholar
  23. 23).
    Kirby, C., Clarke, J. and Gregoriadis, G. (1979). The effect of the cholesterol content of small uni lamellar liposomes on their stability in vivo and in vitro. Biochem. J., in press.Google Scholar
  24. 24).
    Weinstein, J.N., Yoshikani, S., Henkart, P., Blumental, R. and Hagins, W.A. (1977). Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science, 195, 489.PubMedCrossRefGoogle Scholar
  25. 25).
    Ladbrooke, B.D., Williams, R.M. and Chapman, D. (1968). Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. Biochem. Biophys. Acta, 150, 333.PubMedCrossRefGoogle Scholar
  26. 26).
    James, A.T., Lovelock, J.E. and Webb, P.W. (1959). The lipids of whole blood. 1. Lipid biosynthesis in human blood in vitro. Biochem. J., 73, 106.PubMedGoogle Scholar
  27. 27).
    Juliano, R.L. and Stamp, D. (1978). Pharmacokinetics of liposome-encapsulated anti-tumour drugs. Biochem. Pharmacol., 27, 21.PubMedCrossRefGoogle Scholar
  28. 28).
    Gregoriadis, G., Davisson, P.J. and Scott, S. (1977). Binding of drugs onto liposome-entrapped macromolecules prevents diffusion of drugs from liposomes in vitro and in vivo. Biochem. Soc. Trans., 5, 1323.PubMedGoogle Scholar
  29. 29).
    Gregoriadis, G. and Neerunjun, E.D. (1974). Control of the rate of hepatic uptake and catabolism of liposome-entrapped proteins injected into rats. Possible therapeutic applications. Eur. J. Biochem., 47, 179.PubMedCrossRefGoogle Scholar
  30. 30).
    Tagesson, C., Stendahl, O. and Magnusson, K.-E. (1977). The clearance of liposomes after intravenous injection into mice in relation to their physico-chemical properties as assessed by partitioning in an aqueous biphasic system. Studia Biophysica, 64, 151.Google Scholar
  31. 31).
    Black, C.D.V. and Gregoriadis, G. (1976). Interaction of liposomes with blood plasma proteins. Biochem. Soc. Trans., 4, 256.Google Scholar
  32. 32).
    Segal, A.W., Wills, E.J., Richmond, J.E., Slavin, G., Black, C.D.V. and Gregoriadis, G. (1974). Morphological observations on the cellular and subcellular destination of intravenously administered liposomes. Br. J. Exp. Pathol., 55, 320.PubMedGoogle Scholar
  33. 33).
    Wisse, E., Gregoriadis, G. and Daems, W.Th. (1976). The uptake of liposomes by the rat liver. In: “The Reticuloendothelial System in Health and Disease: Functions and Characteristics”, (eds., S.M. Reichard, M.R. Escobar and H. Friedman), p. 237, Plenum Publishing Co., New York.Google Scholar
  34. 34).
    Rahman, Y.-E. and Wright, B.J. (1975). Liposomes containing chelating agents. Cellular penetration and a possible mechanism of metal removal. J. Cell Biol., 65, 112.PubMedCrossRefGoogle Scholar
  35. 35).
    Dapergolas, G., Neerunjun, E.D. and Gregoriadis, G. (1976). Penetration of target areas in the rat by liposome-associated bleomycin, glucose oxidase and insulin. FEBS Lett., 63, 235.PubMedCrossRefGoogle Scholar
  36. 36).
    Segal, A.W., Gregoriadis, G. and Black, C.D.V. (1975). Liposomes as vehicles for the local release of drugs. Clin. Sci. Mol. Med., 49, 99.PubMedGoogle Scholar
  37. 37).
    Richardson, V.J., Jeyasingh, K., Jewkes, R.F., Ryman, B.E. and Tattersall, M.H. (1977). Properties of [99mTc] Technetium-labelled liposomes in normal and tumour-bearing mice. Biochem. Soc. Trans, 5, 290.PubMedGoogle Scholar
  38. 38).
    Gregoriadis, G., Putman, D., Louis, L. and Neerunjun, E.D. (1974). Comparative fate and effect of non-entrapped and liposome-entrapped neuraminidase injected into rats. Biochem. J., 140, 323.PubMedGoogle Scholar
  39. 39).
    Steger, L.D. and Desnick, R.J. (1977). Enzyme therapy. VI. Comparative in vivo fates and effects on lysosomal entegrity of enzyme entrapped in negatively and positively charged liposomes. Biochim. Biophys. Acta, 464, 530.PubMedCrossRefGoogle Scholar
  40. 40).
    Grant, C.W.M. and McConnell, H.M. (1973). Fusion of phospholipid vesicles with viable Acholeplasma laidlawii. Proc. Nat. Acad. Sci. USA, 70, 1238.PubMedCrossRefGoogle Scholar
  41. 41).
    Papahadjopoulos, D., Poste, G. and Mayhew, E. (1974). Cellular uptake of cyclic AMP captured within phospholipid vesicles and effect on cell growth behaviour. Biochim. Biophys. Acta, 363, 404.PubMedCrossRefGoogle Scholar
  42. 42).
    Pagano, R.E. and Huang, L. (1975). Interaction of phospholipid vesicles with cultured mammalian cells. J. Cell Biol., 67, 49.PubMedCrossRefGoogle Scholar
  43. 43).
    Gregoriadis, G. (1978). Liposomes in Therapeutic and Preventive Medicine. The development of the drug carrier concept. Ann. N.Y. Acad. Sci., 308, 343.PubMedCrossRefGoogle Scholar
  44. 44).
    Caride, V.J. and Zaret, B.L. (1977). Liposome accumulation in regions of experimental myocardial infarction. Science, 198, 735.PubMedCrossRefGoogle Scholar
  45. 45).
    Dapergolas, G. and Gregoriadis, G. (1976). Hypoglycaemic effect of liposome-entrapped insulin administered intragastrically into rats. Lancet, 2, 824.PubMedCrossRefGoogle Scholar
  46. 46).
    Gregoriadis, G. (1974). Structural requirements for the specific uptake of macromolecules and liposomes by target tissues. In: “Enzyme therapy in Lysosomal Storage Diseases” (eds., J.M. Tager, G.J.M. Hooghwinkel and W.Th. Daems), p. 131, North Holland Publishing Co.Google Scholar
  47. 47).
    Gregoriadis, G., Neerunjun, E.D. (1975). Homing of liposomes to target cells. Biochem. Biophys. Res. Comm., 65, 537.PubMedCrossRefGoogle Scholar
  48. 48).
    Gregoriadis, G. (1975). Catabolism of glycoproteins. In: “Lysosomes in Biology and Pathology”, (eds., J.T. Dingle and R.T. Dean), p. 265, North Holland Publishing Co.Google Scholar
  49. 49).
    Weissmann, G., Bloomgarden, D., Kaplan, R., Cohen, C., Hoffstein, S., Collins, T., Gottlieb, A. and Nagle, D. (1975). A general method for the introduction of enzymes, by means of immunoglobulin-coated liposomes, into lysosomes of deficient cells in vitro. Proc. Natl. Acad. Sci. USA, 72, 88.PubMedCrossRefGoogle Scholar
  50. 50).
    Cohen, C.M., Weissmann, G., Hoffstein, S., Awasthi, Y.C. and Srivastave, S.K. (1976). Introduction of purified hexosaminidase A into Tay-Sachs leucocytes by means of immunoglobulincoated liposomes. Biochemistry, 15, 452.PubMedCrossRefGoogle Scholar
  51. 51).
    Juliano, R.L. and Stamp, D. (1976). Lectin-mediated attachment of glycoprotein bearing liposomes to cells. Nature, 261, 235.PubMedCrossRefGoogle Scholar
  52. 52).
    Surolia, A. and Bachhawat, B.K. (1977). Monosialyganglioside liposome-entrapped enzyme uptake by hepatic cells. Biochim. Biophys. Acta, 497, 760.PubMedCrossRefGoogle Scholar
  53. 53).
    Magee, W.E., Gronenberger, J.H. and Thor, D.E. (1979). Marked stimulation of lymphocyte-mediated attack on tumour cells by target-directed liposomes containing immune RNA, Cancer Res., 38, 1173.Google Scholar
  54. 54).
    Weinstein, J.N., Blumenthal, R., Sparrow, S.O. and Henkart, P.A. (1978). Antibody-mediated targeting of liposomes. Binding to lymphocytes does not ensure incorporation of vesicle contents into the cells. Biochim. Biophys. Acta, 509, 272.PubMedCrossRefGoogle Scholar
  55. 55).
    Inbar, M. and Shinitzky, M. (1974). Increase of cholesterol level in the surface membrane of lymphoma cells and its inhibitory effect on ascites tumour development. Proc. Nat. Acad. Sci. USA, 71, 2128.PubMedCrossRefGoogle Scholar
  56. 56).
    Martin, F.J. and McDonald, R.C. (1976). Lipid vesicle-cell interactions. III. Introduction of a new antigenic determinant into erythrocyte membranes. J. Cell Biol., 70, 515.PubMedCrossRefGoogle Scholar
  57. 57).
    Papahadjopoulos, D., Poste, G., Wail, W.J. and Biedler, J.L. (1976). Use of lipid vesicles as carriers to introduce actinomycin D into resistant tumour cells. Cancer Res., 36, 2988.PubMedGoogle Scholar
  58. 58).
    Schiffman, F.I. and Klein, I. (1977). Rapid induction of amphotericin B sensitivity in LI210 leukemia cells by liposomes containing ergosterol. Nature, 269, 65.PubMedCrossRefGoogle Scholar
  59. 59).
    Straub, S.X., Garry, R.F. and Magee, W.E. (1974). Interferon induction by poly(I):poly(C) enclosed in phospholipid particles. Infect. Immun., 10, 783.PubMedGoogle Scholar
  60. 60).
    Magee, W.E., Talcott, M.L., Straub, S.X. and Vriend, C.Y. (1976). A comparison of negatively and positively charged liposomes containing entrapped polyinosinic polycytidylic acid for interferon induction in mice. Biochim. Biophys. Acta, 451, 610.PubMedCrossRefGoogle Scholar
  61. 61).
    Mayhew, E., Papahadjopoulos, D., O’Malley, J., Carter, W.A. and Vail, W.J. (1977). Cellular uptake and protection against virus infection by polyinosinic-polycytidylic acid entrapped within phospholipid vesicles. Molec. Pharmacol., 13, 488.Google Scholar
  62. 62).
    Dimitriadis, G.J. (1978). Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes. Nature, 274, 423.CrossRefGoogle Scholar
  63. 63).
    Ostro, M.J., Giacomoni, D., Lavelle, D., Paxton, W. and Dray, S. (1978). Evidence for translation of rabbit globin mRNA after liposome-mediated insertion into a human cell line. Nature, 274, 921.PubMedCrossRefGoogle Scholar
  64. 64).
    Mukherjee, A.B., Orloff, S., Butler, J.D., Triche, T., Lalley, P. and Schulman, J.D. (1978). Entrapment of metaphase chromosomes into phospholipid vesicles (lipochromosomes): Carrier potential in gene transfer. Proc. Nat. Acad. Sci. USA, 75, 1361.PubMedCrossRefGoogle Scholar
  65. 65).
    Belchetz, P.E., Braidman, I.P., Crawley, J.C.W. and Gregoriadis, G. (1977). Treatment of Gaucher’s disease with liposome-entrapped glucocerebroside:β-glucosidase. Lancet, 2, 116.PubMedCrossRefGoogle Scholar
  66. 66).
    Rahman, Y.-E., Rosenthal, M.W. and Cerny, E.A. (1973). Intracellular plutonium: removal by liposome-encapsulated chelating agents. Science, 180, 300.PubMedCrossRefGoogle Scholar
  67. 67).
    Black, C.D.V., Watson, G.J. and Ward, R.J. (1977). The use of Pentostam liposomes in the chemotherapy of experimental leishmaniasis. Transp. Roy. Soc. Trop. Med. Hyg., 71, 550.CrossRefGoogle Scholar
  68. 68).
    New, R.R.C., Chance, M.L., Thomas, S.C. and Peters, W. (1978). Antileishmanial activity of antimonials entrapped in liposomes. Nature, 274, 55.CrossRefGoogle Scholar
  69. 69).
    Bonventre, P. and Gregoriadis, G. (1978). Killing of intraphagocytic Staph. Aureus by dehydrostreptomycin entrapped in liposomes. Antimicrobial Agents and Chemotherapy, 13, 1049.PubMedGoogle Scholar
  70. 70).
    Allison, A.C. and Gregoriadis, G. (1974). Liposomes as immunological adjuvants. Nature, 252, 252.PubMedCrossRefGoogle Scholar
  71. 71).
    Manesis, E.K., Cameron, C. and Gregoriadis, G. (1979). Hepatitis B surface antigen-containing liposomes enhance humoral and cell-mediated immunity to the antigen. FEBS Lett., 102, 107.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • G. Gregoriadis
    • 1
  1. 1.Clinical Research CentreHarrow, MiddlesexEngland

Personalised recommendations