Possible Role of Glutathione in Transport Processes

  • Marian Orlowski
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 69)


A discussion of the possible function of glutathione in transport processes should consider two structural features of the molecule; namely the presence of a SH group and the presence of a γ-glutamyl group. Glutathione is present in all mammalian tissues and cells. Its concentration in the kidney was reported as 2 to 4 mM20. Concentrations as high as 10 to 12 mM, however, have heen found in some other tissues62, 84.In spite of its “ubiquitous” presence the role of glutathione is not yet sufficiently understood. Most of the studies on glutathione have centered on its function in maintaining sulfhydryl groups of proteins in a reduced state, on its protection of cell membranes against an oxidative stress, and on its role in detoxification of foreign compounds. Glutathione has also been credited with a coenzyme function in several enzymatic reactions. All these functions are dependent on the presence of an intact sulfhydryl group. The possible role of the γ-glutamyl group of glutathione has attracted less attention. This discussion will be limited to the enzymology of the γ-glutamyl group. Some experiments, however, will be reviewed in which the evidence can be taken as supporting the involvement of either the γ-glutamyl group or the SH group in the transport of amino acids.


Brush Border Amino Acid Transport Glutathione Synthetase Amino Acid Transport System General Amino Acid Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, Z., Orlowska, J., Orlowski, M., and Szewczuk, A., Histo chemical and biochemical investigations of gamma-glutamyl transpeptidase in the tissues of man and laboratory rodents. Acta His- tochem. 18 (1964) 78–89.Google Scholar
  2. 2.
    Albert, Z., Orlowski,. M,, and Szewczuk, Z., Histochemical demonstration of γ-glutamyl transpeptidase. Nature, 191 (1961) 767–768.ADSPubMedPubMedCentralGoogle Scholar
  3. 3.
    Albert, Z., Orlowski, M., Rzucidlo, Z., and Orlowska, J., Studies on γ -glutamyl transpeptidase activity and its histochemical localization in the central nervous system of man and different animal species. Acta Histochem. 25 (1966) 312–320.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Angielski, S., Niemiro, R., Makarewicz, W., and Rogulski, J., Aminoaciduria caused by maleic acid. Acta Biochim. Polon. 5 (1958) 396–402.Google Scholar
  5. 5.
    Ball, E.G., Cooper, 0., and Clarke, E.C., On the hydrolysis and transpeptidation of glutathione in marine foms, BiolBull.105 (1953) 369–370.Google Scholar
  6. 6.
    Ball, E.G., Revel, J.P., and Cooper, 0., The quantitative measurement of γ -glutamyl transpeptidase activity,J. Biol. Chem.221 (1956) 895–908.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Banay-Schwartz, M., Teller, D.N., Gergely, A., and Lajtha, A., The effect of metabolic inhibitors on amino acid uptake and the levels of ATP, Na+, and K+ in incubated slices of mouse brain. Brain Res. 71 (1974) 117–131.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Binkley, F., Metabolism of glutathione. Nature, 167 (1951) 888–889.ADSPubMedPubMedCentralGoogle Scholar
  9. 9.
    Binkley, F., Purification and properties of renal glutathionase,J. Biol. Chem. 236 (1961) 1075–1082.Google Scholar
  10. 10.
    Binkley, F., and Nakamura, K., Metabolism of glutathione. 1. Hydrolysis by tissues of the rat, J. Biol. Chem. 173 (1948) 411–421.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Bodnaryk, R.P., Membrane bound γ -glutamyl transpeptidase. Evidence that it is a component of the “amino acid site” of certain neutral amino acids, Can. J. Biochem. 50 (1972) 524–528.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Bodnaryk, R.P., Kinetic aspects of the breakdown of γ -glutamyl- L-phenylalanine during sclerotization of the puparium of Musca Domestica, Insect Biochem. 4 (1974) 439–454.Google Scholar
  13. 13.
    Bodnaryk, R.P., Bronskill, J.F., and Feterly, J.R., Membrane-bound γ -glutamyl transpeptidase and its role in phenylalanine absorption-reabsorption in the larva of Musca Dornestica, J. Insect. Physiol, 20 (1974) 167–181.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Bodnaryk, R.P., and Skillings, J.R., γ -Glutamyl transpeptidase catalyzes the synthesis of γ -glutamylphenylalanine in the larva of the housefly Musca Domestica, Insect. Biochem. 1 (1971) 467–474.Google Scholar
  15. 15.
    Buchanan, D.L., Haley, E.E., and Markiw, R.T., Occurrence of ß-aspartyl and γ -gliutamyl dipeptides in human urine. Biochemistry 1 (1962) 612–620.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Christensen, H.N., Aspen, A.J., and Rice, E.G., Metabolism in the rat of three amino acids lacking α-hydrogen, J. Biol. Chem. 220 (1956) 287–294.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Gonnel, G.E., and Hanes, C.S., Enzymatic formation of pyrrolidone carboxylic acid from γ -glutamyl peptides, Nature 177 (1956) 377–378.ADSGoogle Scholar
  18. 18.
    Gurthoys, N.P., and Kuhlenschmidt, T., Phosphate-independent glutaminase from rat kidney. Partial purification and identity with γ -glutamyltranspeptidase,J. Biol. Ghem. 250 (1975) 2099–2105.Google Scholar
  19. 19.
    Dakin, H.D., and Dudley, H.W., Glyoxylase. Part III. The distribution of the enzyme and its relation to the pancreas,J, Biol. Chem. 15 (1913) 463–474.Google Scholar
  20. 20.
    Davidson, B.E., and Hird, F.J.R., The estimation of glutathione in rat tissues. Acomparison of a new spectrophotometric method with the glyoxylase method, Biochem. J. 93 (1964) 232–236.Google Scholar
  21. 21.
    Eldjarn, L., Jellum, E., and Stokke, 0., Pyroglutamic aciduria. Studies on the enzymic block and on the metabolic origin of pyroglutamic acid, Clin. Chim, Acta 40 (1972) 461–476.Google Scholar
  22. 22.
    Eldjarn, L., Jellum, E., and Stokke, 0., Pyroglutamic aciduria. Rate of formation and degradation of pyroglutamate, Clin. Chim. Acta 49 (1973) 311–323.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Fodor, J.P., Miller, A., and Waelsch, H., Quantitative aspects of enzymatic cleavage of glutathione, J. Biol. Chem. 202 (1953) 551–565.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Glenner, G.G., Folk, J.E., and McMillan, P.J., Histochemical demonstration of a γ -glutamyl transpeptidase-like activity, J. Histochem. Cytochem. 10 (1962) 481–489Google Scholar
  25. 25.
    Glossman, H., and Neville, D.M.Jr., γ -Glutamyltransferase in kidney brush border membranes, FEBS Letters 19 (1972) 340–344.Google Scholar
  26. 26.
    Goldbarg, J.A., Friedman, O.M., Pineda, E.P., Smith, E.E., Chatterji, R., Stein, E.H., and Rutenburg, A.M., The colorimetric determination of γ -glutamyl transpeptidase with a synthetic substrate.Arch, Biochem Biopys. 91 (1960) 61–70.Google Scholar
  27. 27.
    Greenberg, E., Wollaeger, E.E., Fleisher, G.A., and Engstrom, G, W., Demonstration of γ -glutamyl transpeptidase activity in human jejunal mucosa,Clin. Chim. Acta 16 (1967) 79–89PubMedPubMedCentralGoogle Scholar
  28. 28.
    Hagenfeldt, L., Larsson, A., and Zetterstrom, R., Pyroglutamic aciduria. Acta Paediat. Scand. 63 (1973) 1–8.Google Scholar
  29. 29.
    Hajjar, J.J. and Gurran, P.F., Gharacteristic of the amino acid transport system in the mucosal border of rabbit ileum,J. Gen. Physiol. 56 (1970) 673–691.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Hanes, G.S., Hird, F.J.R., and Isherwood, F.A. Enzymic transpeptidation reactions involving γ -glutamyl peptides and α-amino-acyl peptides,Biochem, J. 51 (1952) 25–35.Google Scholar
  31. 31.
    Harrison, H., and Harrison, H., Experimental production of renal glycosuria, phosphaturia, and aminoaciduria by injection of maleic acid, Science 120 (1954) 606–608.ADSPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hewitt, J., Pillion, D., and Lelbach, F.H., Inhibition of amino acid accumulation in slices of rat kidney cortex by diamide, Biochim, Biophvs, Acta 363 (1974) 267–276.Google Scholar
  33. 33.
    Hird, F.J.R., The γ -glutamyl transpeptidation reaction, Doctoral dissertation, Cambridge University, England (1950)Google Scholar
  34. 34.
    Jellum, E., Kluge, T., Borresen, H.C., Stokke, 0., and Eldjarn, L., Pyroglutamic aciduria – a new inborn error of metabolism, Scand, J. cliin. Lab. Invest. 26 (1970) 327–335.Google Scholar
  35. 35.
    Kamin, H., and Handler, P., Effect of infusion of single amino acids upon excretion of other amino acids, Amer. J. Physiol. 164 (1951) 654–661.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Kokot, F., Kuska, J. and Grzybek, H., γ –glutamyl transpeptidase in the urine and intestinal contents, Arch. Immun.Therap.Exptl.13 (1965) 549–556.Google Scholar
  37. 37.
    Kokot, F., and Sledzinski, Z., Die γ -glutamyltransferase,Z.Klin. Chem. Klin. Biochem. 12 (1974) 374–384.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Kosower, N.S., Kosower, E.M., and Wertheim, B., Diamide, a new reagent for the intracellular oxidation of glutathione to the disulfide, Biochem. Biophys. Res. Commun. 37 (1969) 593–596.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Kosower, N.S., Song, K.R. and Kosower, E.M., Glutathione IV. Intracellular oxidation and membrane injury, Biochim. BiophysActa. 192 (1969) 23–28.Google Scholar
  40. 40.
    Lajtha, A., Berl, S., and Waelsch, H., Amino acid and protein metabolism of the brain- IV. The metabolism of glutamic acid,J. Neurochem. 3 (1959) 322–332.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Marks, N., Peptide hydrolases, in Handbook of Neurochemistry A. Lajtha (ed). Plenum Press, New York (1970) pp 133–171Google Scholar
  42. 42.
    Meister, A., On the enzymology of amino acid transport. Science 180 (1973) 33–39.ADSPubMedPubMedCentralGoogle Scholar
  43. 43.
    Meister, A., The γ -glutamyl cycle, Ann. Intern. Med. 81 (1974) 247–253.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Mohler, D.N., Majerus, P.W., Minnich, V., Hess, G.E., and Garrick, M.D., Glutathione synthetase deficiency as a cause of hereditary hemolytic disease, N, Engl. J. Med. 283 (1970) 1253–1257.Google Scholar
  45. 45.
    Okonkwo, P.O., Orlowski, M., and Green, J.P., Enzymes of the γ -glutamyl cycle in the choroid plexus and brain, J. Neurochem. 22 (1974) 1053–1058.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Oort, M., Loos, J.A., Prins, H.K., Hereditary absence of reduced glutathione in the erythrocytes, Vox Sang. 6 (1961) 370–373.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Orlowski, M., The role of γ -glutamyl transpeptidase in the internal disease clinic. Arch. Immun. Ther. Exptl. 11 (1963) 1–61.Google Scholar
  48. 48.
    Orlowski, M. and Meister, A., γ -Glutamyl-p-nitroanilide: A new convenient substrate for determination and study of L- and D- γ - glutamyl transpeptidase activity, Biochim. Biophys. Acta 73 (1963) 679–681.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Orlowski, M., and Meister, A., Isolation of γ -glutamyl transpeptidase from hog kidney, J. Biol, Chem, 240 (1965) 338–347.Google Scholar
  50. 50.
    Orlowski, M., and Meister, A,, The γ -glutamyl cycle: a possible transport system for amino acids, Proc. Nat. Acad. Sci. U.S.A.67 (1970) 1248–1255.ADSGoogle Scholar
  51. 51.
    Orlowski, M., and Meister, A., Enzymology of pyrrolidone carhoxylic acid in P.D. Boyer ed.. The Enzymes. Academic Press, Vol. 4 (1971) 123–151.Google Scholar
  52. 52.
    Orlowski, M., and Meister, A., Isolation of highly purified γ-glutamylcysteine synthetase from rat kidney, Biochemistry 10 (1971) 372–380.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Orlowski, M., and Meister, A., γ -Glutamyl cyclotransferase: Distribution, Isozymic forms and specificity, J. Biol. Chem. 248 (1973) 2836–2844.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Orlowski, M., Okonkwo, P.O. and Green, J.P., Activation of γ - glutamyl transpeptidase by monovalent cations, FEBS Letters 31 (1973) 237–240.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Orlowski, M., Sessa, G., and Green. J. P., γ -Glutamyl transpeptidase in brain capillaries: Possible site of a blood-brain barrier for amino acids, Science 184 (1974) 66–68ADSPubMedPubMedCentralGoogle Scholar
  56. 56.
    Orlowski, M., and Szewczuk, A., Golorimetric detennination of γ - glutamyl transpeptidase activity in human serum and urine with synthetic substrates, Acta Biochim. Polon. 8 (1961) 189–200.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Orlowski, M., and Szewczuk, A., Determination of γ -glutamyl transpeptidase in human serum and urine, Clin. Chim. Acta (1962) 755–760.Google Scholar
  58. 58.
    Orlowski, M., and Wilk, S., Intermediates of the γ -glutamyl cycle in mouse tissues, Eur. J. Biochem. 53 (1975) 581–590.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Orlowski, M., and Wilk, S., In vivo inhibition of γ -glutamylcysteine synthetase by L-methionine-RS-sulfoximine, J. Neurochem. 1975, In press.Google Scholar
  60. 60.
    Ramakrishna, M., Krishnaswamy, P.R., and Rao, D.R. Metabolism of pyrrolidone carboxylate in the rat, Biochem.J. 118 (1970) 895–897PubMedPubMedCentralGoogle Scholar
  61. 61.
    Rathbun, W.B. and Wicker, K., Bovine lens γ -glutamyl transpeptidase, Exp. Eye Res. 15 (1973) 161–171.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Reddy, V.N., Metabolism of glutathione in lens, Exp. Eye Res.11 (1971) 310–328.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Reddy, V.N. and Unakar, N.J., Localization of γ -glutamyl transpeptidase in rabbit lens, ciliary processes and cornea, Exp. Eye Res. 17 (1973) 405–408.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Richards, F., Gooper, H.R., Pearce, L.A., Gowan, R.J., Spurr, G. L., Familial spinocerebellar degeneration, hemolytic anemia and glutathione deficiency. Arch. Int. Med. 143 (1974) 534–537.Google Scholar
  65. 65.
    Richter, R., Some properties of γ -glutamyl transpeptidase from human kidney,Arch. Immun. Ther. Exptl. 17 (1969) 476–495.Google Scholar
  66. 66.
    Rosalki, S., γ -Glutamyl transpeptidase. in: O. Bodansky and A.L. Latner (ed.) Advances in Clinical Chemistry. Academic Press New York (1975) pp. 53–107.Google Scholar
  67. 67.
    Rosenberg, L.E., and Segal, S., Maleic acid-induced inhibition of amino acid transport in rat kidney, Biochem.J. 92 (1964) 345–352.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Ross, L.L., Barber, L., Tate, S.S., and Meister, A., Enzymes of the γ -glutamyl cycle in the ciliary body and lens, Proc, Nat, Acad. Sci. U.S.A. 70 (1973) 2211–2214.ADSGoogle Scholar
  69. 69.
    Rush, E.A., and Starr, J.L., The indirect incoirporation of pyrrolidone carboxylic acid into transfer ribonucleic acid, Biochim. Biophys. Acta 199 (1970) 41–45.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Rutenburg, A.M., Kim, H., Fishbein, J.W., Hanker, J.S., Wasserkrug, H.L., and Seligman, A.M., Histochemical and ultrastructural demonstration of γ -glutamyl transpeptidase activity, J. Histochem. Gytochem. 17 (1969) 517–526.Google Scholar
  71. 71.
    Sano, I., Simple peptides in brain, in: C.C. Pfeifer and J. R. Smythies, (eds.) Intern. Rev. Neurobiology, Academic Press, New York, 12 (1970) 235–263Google Scholar
  72. 72.
    Scriver, G.R., and Bergeron, M., Amino acid transport in kidney, in: W.L., Nyhan (ed.) Heritable disorders of amino acid metabolism, John Wiley & Sons, New York(1974) 515–592.Google Scholar
  73. 73.
    Sekura, R., and Meister, A., Glutathione turnover in the kidney. Considerations relating to the γ -glutamyl cycle and the transport of amino acids, Proc. Nat. Acad. Sci. U.S.A. 71 (1974) 2969–2972.ADSGoogle Scholar
  74. 74.
    Snoke, J.E., and Bloch, K., The biosynthesis of glutathione, in: S. Colowick, A.L. Lazarow, E. Racker, D.R. Schwarz, E. Stadtman and H. Waelsch, (eds.) Symposium on Glutathione. Academic Press New York, (1954) PP. 129–137Google Scholar
  75. 75.
    Szewczuk, A., and Baranowski, T., Purification and properties of γ -glutamyl transpeptidase from beef kidney, BiochemZ. 338 (1963) 317–329.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Szewczuk, A. and Gonnel, G.E., The reaction of iodoacetamide with the active center of γ -glutamyl transpeptidase, Biochim. Biophys. Acta 105 (1965) 352–367.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Szewczuk, A. and Orlowski, M., The use of α-N-DL-glutamyl aminonitriles for the colorimetric determination of a specific peptidase in blood serum, Clin. Chim. Acta 5 (1960) 680–688.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Taniguchi, N., Purification and some properties of γ -glutamyl transpeptidase from azo-dye-induced hepatoma, J. Biochem. 75 (1974) 473–480.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Tate, S.S., γ -Glutamyl transpeptidase: Properties in relation to its proposed physiological role, in: C.L. Markert (ed.) Isozymes, Vol. 2, Academic Press, New York (1975) 743–765.Google Scholar
  80. 80.
    Tate, S.S., and Meister, A., Stimulation of the hydrolytic activity and decrease of the transpeptidase activity of γ -glutamyl transpeptidase by maleate: Identity of a rat kidney maleate stimulated glutaminase and γ -glutamyl transpeptidase, Proc. Nat. Acad. Sci. U.S.A. 71 (1974) 3329–3333.ADSGoogle Scholar
  81. 81.
    Tate, S.S. and Meister, A., Interaction of γ -glutamyl transpeptidase with amino acids, dipeptides and derivatives and analogs of glutathione. J. Biol. Chem. 249 (1974) 7593–7602.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Tate, S.S., and Meister, A., Identity of maleate-stimulated glutaminase with γ -glutamyl transpeptidase of rat kidney. J. Biol.Chem. 250 (1975) 4619–46627.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Tate, S.S., Ross, L.L. and Meister, A., The γ -glutamyl cycle in the choroid plexus: its possible function in amino acid transport, Proc. Nat. Acad, Sci. U.S.A. 70 (1973) 1447–1449.ADSGoogle Scholar
  84. 84.
    Tietze, F., Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione. AnalBiochem. 27, (1969) 502–522.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Van Der Werf, P., Orlowski, M. and Meister, A., Enzymatic conversion of 5-oxo-L-proline (L-pyrrolidone carboxylate) to L-glutamate coupled with cleavage of ATP to ADP, a reaction in the γ - glutamyl cycle, Proc. Nat. Acad. Sci. U.S.A. 68 (1971) 2982–2985.ADSGoogle Scholar
  86. 86.
    Van Der Werf, P., Stephani, A. and Meister, A., Accumulation of 5-oxoproline in mouse tissues after inhibition of 5-oxoprolinase and administration of amino acids: evidence for function of the γ -glutamyl cycle. Proc. Nat. Acad. Sci. U.S.A. 71 (1974) 1026–1029.ADSGoogle Scholar
  87. 87.
    Van Der Werf, P., Stephani, A., Orlowski, M. and Meister, A., Inhibition of 5-oxoprolinase by 2-imidazolidone-4-carboxylic acid, Proc. Nat. Acad. Sci. U.S.A. 70 (1973) 759–761.ADSGoogle Scholar
  88. 88.
    Wellner, V.P., Sekura, R., Meister, A. and Larsson, A., Glutathione synthetase deficiency, an inborn error of metabolism involving the γ -glutamyl cycle in patients with 5-oxoprolinuria (pyroglutamic aciduria), Proc. Nat. Acad. Sci. U.S.A. 71 (1974) 2505–2509.ADSGoogle Scholar
  89. 89.
    Wilk, S. and Orlowski, M., The occurrence of free L-pyrrolidone carboxylic acid in body fluids and tissues, FEES Letters (1973) 157–160.Google Scholar
  90. 90.
    Woodward, G.E., Munro, M.P. and Schroeder, E.F., Glyoxylase IV. The antiglyoxalase action of kidney and pancreas preparations, J. Biol. Chem., 109 (1935) 11–27.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Marian Orlowski
    • 1
  1. 1.Department of PharmacologyMount Sinai School of Medicine of the City University of New YorkNew YorkUSA

Personalised recommendations