Transport of Taurine in the Central Nervous System

  • S. S. Oja
  • P. Kontro
  • P. Lähdesmäki
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 69)


Taurine, 2-aminoethanesulphonic acid, is present in brain tissue in millimolar concentrations44; however, taurine levels show considerable differences in different mammalian species38 and at different developmental stages37. The physiological role of taurine, apart from its conjugation with bile acids, is virtually obscure. However, more and more attention has been paid to its possible function in electrically excitable tissues, such as brain, retina, heart or muscle. Taurine inhibits the spontaneous firing of some central synapses with a potency equal to that of γ-aminobutyric acid8,17 and affects the excitability of cardiac muscle46, 58. Some authors are therefore inclined to consider taurine one of the inhibitory neurotransmitters10, 29, 42


Brain Slice Amino Acid Uptake Taurine Transport Taurine Concentration Taurine Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BATTISTIN, L., GRYNBAUM, A., LAJTHA, A., Energy dependence of amino acid uptake in brain slices, Brain Res. 16 (1969) 187–197.CrossRefGoogle Scholar
  2. 2.
    BENNETT, Jr., J.P., LOGAN, W.J., and SNYDER, S.H., Amino acids as central nervous transmitters: The influence of ions, amino acid analogues and ontogeny on transport systems for L-glut- amic and L-aspartic acids and glycine into central nervous synaptosomes of the rat, J. Neurochem. 21 (1973) 1533–1550.CrossRefGoogle Scholar
  3. 3.
    BLEECKER, M., and GFELLER, E., In vitro uptake of -taurine in rat and Rhesus monkey brain: regional differences and changes during development. Transact. Amer. Soc. Neurochem. 2 (1971) 57.Google Scholar
  4. 4.
    CHRISTENSEN, H.N., and LIANG, M., An amino acid transport system of unassignated function in the Ehrlich ascites tumor cell, J. biol. Chem. 240 (1965) 3601–3608.PubMedGoogle Scholar
  5. 5.
    COLLINS, G.G.S., The rates of synthesis, uptake and disappearance of I14CI-taurine in eight areas of the rat central nervous system. Brain Res. 76 (1974) 447–459.CrossRefGoogle Scholar
  6. 6.
    COLLINS, G.G.S., and TOPIWALA, S.H., The release of l14Cl- taurine from slices of rat cerebral cortex and spinal cord evoked by electrical stimulation and high potassium ion concentrations, Brit. J. Pharmacol. 50 (1974) 451P-452P.Google Scholar
  7. 7.
    CRNIC, D.M., HAMMERSTAD, J.P., and CUTLER, R.W.P., Accelerated efflux of|14C| and |3H| amino acids from superfused slices of rat brain, J. Neurochem. 20 (1973) 203–209.CrossRefGoogle Scholar
  8. 8.
    CURTIS, D.R., and WATKINS, J.C., The pharmacology of amino acids related to gamma-aminobutyric acid, Pharmacol. Rev. 17 (1965) 347–391.PubMedGoogle Scholar
  9. 9.
    DAVISON, A.N., Amino acid decarboxylases in rat brain and liver, Biochim. Biophys. Acta, 19 (1956) 66–73.CrossRefGoogle Scholar
  10. 10.
    DAVISON, A.N., and KACZMAREK, L.K., Taurine - a possible neurotransmitter? Nature, 234 (1971) 107–108.ADSCrossRefGoogle Scholar
  11. 11.
    De BELLEROCHE, J.S., and BRADFORD, H.F., Amino acids in synaptic vesicles from mammalian cerebral cortex: A reappraisal, J. Neurochem. 21 (1973) 441–451.CrossRefGoogle Scholar
  12. 12.
    EHINGER, B., Glial uptake of taurine in the rabbit retina. Brain Res. 60 (1973) 512–516.CrossRefGoogle Scholar
  13. 13.
    FIORI, A., and COSTA, M., Oxidation of hypotaurine by peroxide, Acta vitamin. (Milano) 23 (1969) 204–207.Google Scholar
  14. 14.
    GAITONDE, M.K., Sulfur amino acids. In A. LAJTHA (Ed.) Handbook of Neurochemistry, vol. 3., Plenum Press, New York (1970), pp. 225–287.Google Scholar
  15. 15.
    GLOBUS, A., LUX, H.D., and SCHUBERT, P., Somadendritic spread of intracellularly injected tritiated glycine in cat spinal motoneurons. Brain Res. 11 (1968) 440–445.CrossRefGoogle Scholar
  16. 16.
    GRAY, E.G., and WHITTAKER, V.P., The isolation of nerve endings from brain: An electronmicroscopic study of cell frag- ments derived by homogenization and centrifugation, J. Anat. 96 (1962) 79–88.PubMedPubMedCentralGoogle Scholar
  17. 17.
    HAAS, H.L., and HÖSLI, L., The depression of brain stem neurones by taurine and its interaction with strychnine and bicuculline. Brain Res. 52 (1973) 399–402.CrossRefGoogle Scholar
  18. 18.
    HAMMERSTAD, J.P., MURRAY, J.E., and CUTLER, R.W.P., Efflux of amino acid neurotransmitters from rat spinal cord slices. II. Factors influencing the electrically induced efflux of glycine and %-GABA, Brain Res. 35 (1971) 357–367.CrossRefGoogle Scholar
  19. 19.
    HONEGGER, C.G., KREPELKA, L.M., STEINER, M., and HAHN, H.P., Kinetics and subcellular distribution of |35S|-taurine uptake in rat cerebral cortex slices, Experientia 29 (1973) 1235–1237.CrossRefGoogle Scholar
  20. 20.
    JACOBSEN, J.G., and SMITH, L.H., Biochemistry and physiology of taurine derivatives, Physiol. Rev. 48 (1968) 424–511.CrossRefGoogle Scholar
  21. 21.
    JACOBSEN, J.G., THOMAS, L.L., and SMITH, L.H., Properties and distribution of mammalian L-cysteine sulphinate carboxylyases, Biochim. Biophys. Acta 85 (1964) 103–116.PubMedGoogle Scholar
  22. 22.
    KACZMAREK, L.K., and DAVISON, A.N., Uptake and release of taurine from rat brain slices, J. Neurochem. 19 (1972) 2355–2362.CrossRefGoogle Scholar
  23. 23.
    KANDERA, J., LEVI, G., and LAJTHA, A., Control of cerebral metabolite levels. II. Amino acid uptake and levels in various areas of the rat brain. Arch. Biochem. Biophys. 126 (1968) 249–260.CrossRefGoogle Scholar
  24. 24.
    KATZ, R.I., CHASE, T.N., and KOPIN, I.J., Effect of ions on stimulus-induced release of amino acids from mammalian brain slices, J. Neurochem. 16 (1969) 961–967.CrossRefGoogle Scholar
  25. 25.
    KONTRO, P., LÄHDESMÄKI, P., and OJA, S.S., Influx of taurine into rat brain synaptosomes. Abstracts, Fifth International Meeting of the International Society for Neurochemistry, Barcelona, 1975, p. 142.Google Scholar
  26. 26.
    KROMPHARDT, H., Die Aufnahme von Taurin in Ehrlich-Ascites- Tumorzellen, Biochem. Z. 339 (1963) 233–254.Google Scholar
  27. 27.
    LÄHDESMÄKI, P., and OJA, S.S., Effect of electrical stimulation on the influx and efflux of taurine in brain slices of newborn and adult rats, Exp. Brain Res. 15 (1972) 430–438.CrossRefGoogle Scholar
  28. 28.
    LÄHDESMÄKI, P., and OJA, S.S., On the mechanism of taurine transport at brain cell membranes, J. Neurochem. 30 (1973) 1411–1417.CrossRefGoogle Scholar
  29. 29.
    LÄHDESMÄKI, P., and OJA, S.S., Is taurine an inhibitory neurotransmitter? Med. Biol. 52 (1974) 138–143.PubMedGoogle Scholar
  30. 30.
    LÄHDESMÄKI, P., PASULA, M., and OJA, S.S., Effect of electrical stimulation and chlorpromazine on the uptake and release of taurine, y-aminobutyric acid (GABA) and glutamic acid in mouse brain synaptosomes, J. Neurochem. 1975 (in press).Google Scholar
  31. 31.
    LAJTHA, A., and SERSHEN, H., Inhibition of amino acid uptake by the absence of Na+ in slices of brain, J. Neurochem. 24 (1975) 667–672.CrossRefGoogle Scholar
  32. 32.
    MINATO, A., HIROSE, S., OGISO, T., UDA, K., TAKIGAWA, Y., and FUJIHIRA, E., Distribution of radioactivity after administration of taurine -35S in rats. Chem. Pharm. Bull. 17 (1969) 1498–1504.CrossRefGoogle Scholar
  33. 33.
    MIRAGLIA, R.J., MARTIN, W.G., SPAETH, D.G., and PATRICK, H., On the synthesis of taurine from sulfate by the chick: I. Influential dietary factors, Proc. Soc. exp. Biol. Med. 123 (1966) 725–730.CrossRefGoogle Scholar
  34. 34.
    NEAL, M.J., PEACOCK, D.G., and WHITE, R.D., Kinetic analysis of amino acid uptake by rat retina in vitro, Brit. J. Pharmacol. 47 (1973) P656-P657.CrossRefGoogle Scholar
  35. 35.
    OJA, S.S., Exchange of taurine in brain slices of adult and 7-day-old rats, J. Neurochem. 18 (1971) 1847–1852.CrossRefGoogle Scholar
  36. 36.
    OJA, S.S., KARVONEN, M.-L., and LÄHDESMÄKI, P., Biosynthesis of taurine and enhancement of decarboxylation of cysteine sul- phinate and glutamate by the electrical stimulation of rat brain slices. Brain Res. 55 (1973) 173–178.CrossRefGoogle Scholar
  37. 37.
    OJA, S.S., and PIHA, R.S., Changes in the concentration of free amino acids in the rat brain during postnatal development, Life Sei. 5 (1966) 865–870.CrossRefGoogle Scholar
  38. 38.
    OJA, S.S., UUSITALO, A.J., VAHVELAINEN, M.-L., and PIHA, R.S., Changes in cerebral and hepatic amino acids in the rat and guinea pig during development. Brain Res. 11 (1968) 655–661.CrossRefGoogle Scholar
  39. 39.
    PASANTES-MORALES, H., KLETHI, J., LEDIG, M., and MANDEL, P., Influence of light and dark on the free amino acid pattern of the developing chick retina. Brain Res. 57 (1973) 59–65.CrossRefGoogle Scholar
  40. 40.
    PASANTES-MORALES, H., KLETHI, J., URBAN, P.F., and MANDEL, P., The physiological role of taurine in retina: uptake and effect on electroretinogram (ERG), Physiol. Chem. Phys. 4 (1972) 339–348.PubMedGoogle Scholar
  41. 41.
    PASANTES-MORALES, H., KLETHI, J., URBAN, P.F., and MANDEL, P., The effect of electrical stimulation, light and amino acids on the efflux of 35S-taurine from the retina of domestic fowl, Exp. Brain Res. 19 (1974) 131–141.CrossRefGoogle Scholar
  42. 42.
    PASANTES-MORALES, H., URBAN, P.F., KLETHI, J., and MANDEL, P., Light stimulated release of taurine from chicken retina. Brain Res. 51 (1973) 375–378.CrossRefGoogle Scholar
  43. 43.
    PECK, E.J., and AWAPARA, J., Formation of taurine and isethi- onic acid in rat brain, Biochim. Biophys. Acta 141 (1967) 499–506.CrossRefGoogle Scholar
  44. 44.
    PIHA, R.S., OJA, S.S., and UUSITALO, A.J., The effect of chlorpromazine on free amino acids in the rat brain, Ann. Med. exp. Biol. Fenn. 40, Suppl. 5 (1962) 1–28.Google Scholar
  45. 45.
    RASSIN, D.K., Amino acids as putative transmitters: failure to bind to synaptic vesicles of guinea pig cerebral cortex, J. Neurochem. 19 (1972) 139–149.CrossRefGoogle Scholar
  46. 46.
    READ, W.O., and WELTY, J.D., Effect of taurine on epinephrine- and digoxin-induced irregularities of dog heart, J. Pharmacol. exp. Therap. 139 (1963) 283–289.Google Scholar
  47. 47.
    REDDY, D.V.N., Studies on intraocular transport of taurine. I. Accumulation in rabbit ciliary body-iris preparation in vitro, Biochim. Biophys. Acta, 158 (1968) 246–254.CrossRefGoogle Scholar
  48. 48.
    SASS. N.L., and MARTIN, W.G., The synthesis of taurine from sulfate. III. Further evidence for the enzymatic pathway in chick liver, Proc. Soc. Exp. Biol. Med. 139 (1972) 755–761.CrossRefGoogle Scholar
  49. 49.
    SCHMID, R., SIEGHART, W., and KAROBATH, M., Taurine uptake in synaptosomal fractions of rat cerebral cortex, J. Neurochem. 25 (1975) 5–9.CrossRefGoogle Scholar
  50. 50.
    SCHRIER, B.K., and THOMPSON, E.J., On the role of glial cells in the.mammalian nervous system. Uptake, excretion and metabolism of putative neurotransmitters by cultured glial tumor cells, J. biol. Chem. 249 (1974) 1769–1780.PubMedGoogle Scholar
  51. 51.
    SCHUBERT, P., KREUTZBERG, G.W., and LUX, H.D., Use of microelectrophoresis in the autoradiographic demonstration of fiber projections. Brain Res. 39 (1972) 274–277.CrossRefGoogle Scholar
  52. 52.
    SIEGHART, W., and KAROBATH, M., Evidence for specific synaptosomal localization of exogenous accumulated taurine, J. Neurochem. 23 (1974) 911–915.CrossRefGoogle Scholar
  53. 53.
    SNYDER, S.H., YOUNG, A.B., BENNET, J.P., and MULDER, A.H., Synaptic biochemistry of amino acids. Fed. Proc. 32 (1973) 2039–2047.PubMedGoogle Scholar
  54. 54.
    SPAETH, D.G., and SCHNEIDER, D.L., Taurine pools in the adult male rat. Fed. Proc. 31 (1972) 731.Google Scholar
  55. 55.
    STARR, M.S., and VOADEN, M.J., The uptake, metabolism and release of 14C-taurine by rat retina in vitro. Vision Res. 12 (1972) 1261–1269.CrossRefGoogle Scholar
  56. 56.
    SUMIZU, K., Oxidation of hypotaurine in rat liver, Biochim. Biophys. Acta, 63 (1962) 210–212.CrossRefGoogle Scholar
  57. 57.
    TOMICHEK, R.C., SASS, N.L., and MARTIN, W.G., Role of vitamins in taurine synthesis from sulfate by the chick, J. Nutrition 102 (1972) 313–318.CrossRefGoogle Scholar
  58. 58.
    WELTY, J.D., and READ, W.O., Studies on some cardiac effects of taurine, J. Pharmacol, exp. Therap. 144 (1964) 110–115.Google Scholar
  59. 59.
    WHITTAKER, V.P., The synaptosome. In A. LAJTHA (Ed.), Handbook of Neurochemistry, vol. 2, Plenum Press, New York, London, 1969, pp. 327–364.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • S. S. Oja
    • 1
    • 2
  • P. Kontro
    • 1
    • 2
  • P. Lähdesmäki
    • 1
    • 2
  1. 1.Institute of Biomedical SciencesUniversity of TampereFinland
  2. 2.Department of BiochemistryUniversity of OuluFinland

Personalised recommendations