Ab Initio Methods for Electronic Structures of Crystalline Solids

  • Frank E. Harris
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 24)

Abstract

Two approaches have been dominant in theoretical studies of the electronic structures and properties of crystalline solids. The first and older approach involves the use of an independent-electron formalism, but with a semi-empirically determined effective Hamiltonian designed to reproduce the effects of electron exchange and correlation. A variety of effective Hamiltonians have been used, ranging from pseudopotentials, chosen mainly on the basis of agreement with experiment, to a priori choices such as the highly popular Xα method (Slater, 1970, 1971; Johnson and Smith, 1971), where the exchange-correlation potential is based on studies of the uniform electron gas (Slater, 1951; Gaspar, 1954; Kohn and Sham, 1965). This approach, although highly successful for many problems, leaves certain questions unanswered; among these are detailed assessments of the quality of the Hartree-Fock wavefunction, the quantitative roles of exchange and correlation, and the elucidation of collective phenomena inherently ruled out by an independent-electron model.

References

  1. Abramowitz, M. and Stegun, I.A. (eds.) 1964. Handbook of Mathematical Functions (U.S. National Bureau of Standards, Washington ), p. 888.MATHGoogle Scholar
  2. Bertaut, E.F. 1952. J. Phys. Radium 13, 499.MATHCrossRefGoogle Scholar
  3. Bonham, R.A., Peacher, JQL. and Cox, H.L., Jr. 1964. J. Chem. Phys. 40, 3083.ADSCrossRefGoogle Scholar
  4. Brener, N.E. 1975a. Phys. Rev. B 11, 929.Google Scholar
  5. Brener, N.E. 1975b. Phys. Rev. B 11, 1600.ADSGoogle Scholar
  6. Brueckner, K.A. 1969. Adv. Chem. Phys. 14, 215.CrossRefGoogle Scholar
  7. Calais, J.L. and Sperber, G. 1972. J. Phys. ( Paris ) 33, 205.Google Scholar
  8. Calais, J.L. and Sperber, G. 1973, Int. J. Quantum Chem. 7, 501; 7, 521;7, 537.Google Scholar
  9. Cizek, J. 1966. J. Chem. Phys. 45, 4256.ADSCrossRefGoogle Scholar
  10. Cizek, J. and Paldus, J. 1971. Int. J. Quantum Chem. 5, 359.CrossRefGoogle Scholar
  11. Emersleben, O. 1923. Physik. Z. 24, 97.Google Scholar
  12. Emersleben, O. 1950. Z. Angew. Math. Mech. 30, 252.MATHCrossRefGoogle Scholar
  13. Euwema, R.N. and Surratt, G.T, 1975. J. Phys. Chem. Solids 36, 67.ADSCrossRefGoogle Scholar
  14. Euwema, R.N. Wilhite, D.L. and Surratt, G.T. 1973. Phys. Rev. B 7, 818.ADSCrossRefGoogle Scholar
  15. Euwema, R.N., Webfer, G.G., Surratt, G.T. and Wilhite, D.L. 1974. Phys. Rev. B 9, 5249.ADSCrossRefGoogle Scholar
  16. Evjen, H.M. 1932«, Phys. Rev. 39, 675.Google Scholar
  17. Ewald, P.P. 1921. Ann. Physik 64, 253.ADSMATHCrossRefGoogle Scholar
  18. Freeman, D.L. 1976. Private communication.Google Scholar
  19. Gaspar, R. 1954. Acta Phys. Hung. 3, 263.MathSciNetMATHCrossRefGoogle Scholar
  20. Harris, F.E. 1975. Theoretical Chemistry, H. Eyring and D. Henderson, eds. (Academic Press, New York), Vol. 1, pp. 147–218.Google Scholar
  21. Harris, F.E., Kumar, L. and Monkhorst, H. 1972. J. Phys. ( Paris ) 33, 99.Google Scholar
  22. Harris, F.E., Kumar, L. and Monkhorst, H. 1973. Phys. Rev. B 7 2850.ADSCrossRefGoogle Scholar
  23. Harris, F.E. and Monkhorst, H. 1969. Phys. Rev. Lett. 23, 1026.ADSCrossRefGoogle Scholar
  24. Harris, F.E. and Monkhorst, H. 1971. Computational Methods in Band Theory, P.M. Marcus, J.F. Janak and A.R. Williams, eds. (Plenum Press, New York ), pp. 517–541.CrossRefGoogle Scholar
  25. Harris, F.E. and Monkhorst, H. 1972. Int. J. Quantum Chem. 6, 601.CrossRefGoogle Scholar
  26. Johnson, K.H. and Smith, F.C., Jr. 1971. Int. J. Quantum Chem. 5S, 429.Google Scholar
  27. Kelly, H.P. 1969. Adv. Chem. Phys. 14, 129.CrossRefGoogle Scholar
  28. Kikuchi, R. 1954. J. Chem. Phys. 22, 148.Google Scholar
  29. Kohn, W. and Sham, L.J. 1965. Phys. Rev. 140, A1133.MathSciNetADSCrossRefGoogle Scholar
  30. Kumar, L. and Monkhorst, H. 1974. J. Phys. F 4, 1135.ADSCrossRefGoogle Scholar
  31. Kümmel, H. 1962. Lectures on the Many-Body Problem, E.R. Caianiello, ed. (Academic Press, New York ), p. 265.Google Scholar
  32. Mattuck, R.D. 1967. A Guide to Feynman Diagrams in the Many-Body Problem ( McGraw-Hill, New York).Google Scholar
  33. Monkhorst, H. 1972. Chem. Phys. Lett. 17, 461.ADSCrossRefGoogle Scholar
  34. Monkhorst, H. and Oddershede, J. 1973. Phys. Rev. Lett. 30, 797.ADSCrossRefGoogle Scholar
  35. Nesbet, R.K. 1967. Phys. Rev. 155, 51.ADSCrossRefGoogle Scholar
  36. Ramaker, D.E., Kumar, L. and Harris, F.E. 1975. Phys. Rev. Lett. 34, 812.ADSCrossRefGoogle Scholar
  37. Shavitt, I. and Karplus, M. 1965. J. Chem. Phys. 43, 398.MathSciNetADSCrossRefGoogle Scholar
  38. Sinanoglu, O. 1962. J. Chem. Phys. 36, 706.ADSCrossRefGoogle Scholar
  39. Slater, J.C. 1951. Phys. Rev. 81, 385.ADSMATHCrossRefGoogle Scholar
  40. Slater, J.C. 1970. Int. J. Quantum Chem. 4S, 3.Google Scholar
  41. Slater, J.C. 1971. Int. J. Quantum Chem. 5S, 403.Google Scholar
  42. Tosi, M.P. 1964. Solid State Physios, F. Seitz and D. Turnbull, eds. (Academic Press, New York ), pp. 1–120.Google Scholar
  43. Weiss, G.H. and Maradudin, A.A. 1962. J. Math. Phys. 3, 771.ADSMATHCrossRefGoogle Scholar
  44. Zivkovic, T. 1976. Private communication.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Frank E. Harris
    • 1
  1. 1.Department of PhysicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations