Coronaviruses pp 391-398 | Cite as

Characterization of Mouse Hepatitis Virus-Reactive T Cell Clones

  • Shigeru Kyuwa
  • Kenjiro Yamaguchi
  • Masanori Hayami
  • Kosaku Fujiwara
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 218)


Mouse hepatitis virus (MHV) is a member of the family Coronaviridae and known to induce various types of disease, hepatitis, enteritis and encephalitis in mice depending upon the host strain, age, and immune status1. Using nude or immunomodulated mice, T cell-mediated immunity in MHV infections was suggested to play an important role.2, 3 By the adoptive transfer of spleen cells from immune euthymic mice the growth of MHV in the recipient nude mice was inhibited, and the transfer effect was abolished by treating immune spleen cells with anti-BAT serum and complement3.


Cell Clone Spleen Cell Stimulator Cell Mouse Hepatitis Virus Hind Footpad 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Wege, S. Siddell, and V. ter Meulen, The biology and pathogenesis of coronaviruses, Curr. Top. Microbiol. Immunol. 99: 165 (1982).PubMedCrossRefGoogle Scholar
  2. 2.
    J. M. Dupuy, E. Levey-Leblond, and C. Le Prévost, Immunopathology of mouse hepatitis virus type 3 infection. II. Effect of immunosuppession in resistant mice, J. Immunol. 114: 226 (1975).PubMedGoogle Scholar
  3. 3.
    C. Kai, T. Tamura, and K. Fujiwara, Effect of immune heterozygous spleen cell transfer on resistance to mouse hepatitis virus infection in nude mice, Microbiol. Immunol. 25: 1011 (1981).PubMedGoogle Scholar
  4. 4.
    S. A. Stohlman, G. K. Matsushima, N. Casteel, and L. P. Weiner, In vivo effects of coronavirus-specific T cell clones: DTH inducer cells prevent a lethal infection but do not inhibit virus replication, J. Immunol. 136: 3052 (1986).PubMedGoogle Scholar
  5. 5.
    H. C. J. Ertl and R. W. Finberg, Characteristics and function of Sendai virus-specific T cell clones, J. Virol. 50: 425 (1984).PubMedGoogle Scholar
  6. 6.
    S. Kyuwa and K. Fujiwara, Delayed-type hypersensitivity in mouse hepatitis virus infection in mice, Japan J. Exp. Med. 54: 81 (1984).Google Scholar
  7. 7.
    J. G. Woodward, G. Matsushima, J. A. Frelinger, and S. A. Stohlman, Production and characterization of T cell clones specific for mouse hepatitis virus, strain JHM: in vivo and in vitro analysis, J. Immunol. 133: 1016 (1984).PubMedGoogle Scholar
  8. 8.
    T. J. Braciale, M. E. Andrew, and V. L. Braciale, Heterogeneity and specificity of cloned lines of influenza virus-specific cytotoxic T lymphocytes, J. Exp. Med. 153: 910 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    J. A. Byrne and M. B. A. Oldstone, Biology of cloned cytotoxic T lymphocytes specific for lymphocytic choriomeningitis virus: clearance of virus in vivo, J. Virol. 51: 682 (1984).PubMedGoogle Scholar
  10. 10.
    K. Fujiwara, Problems in checking innaparent infections in laboratory mouse colonies. An attempt at serological checking by anamnestic response, in: “Defining of the laboratory animals”, H. A. Scheneider, ed., National Academy of Science, Washington, D. C. (1971).Google Scholar
  11. 11.
    N. Hirano, K. Fujiwara, S. Hino, and M. Matsumoto, Replication and plaque formation of mouse hepatitis virus(MHV-2) in mouse cell line DBT culture, Arch. Ges. Virusforsh. 44: 298 (1974).CrossRefGoogle Scholar
  12. 12.
    S. Gillis, M. M. Fera, W. Ou, and K. A. Smith, T cell growth factor: parameters of production and a quantitative microassay for activity, J. Immunol. 120: 2027 (1978).PubMedGoogle Scholar
  13. 13.
    T. M. Dexter, J. Garland, D. Scott, E. Scolnick, and D. Metcalf, Growth of factor-dependent hemopoietic precursor cell lines, J. Exp. Med. 152: 1036 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    E. De Maeyer and J. De Maeyer-Guignard, Delayed-type hypersensitivity to Nescastle disease virus in high and low inferferon-producing mice, J. Immunol. 130: 2392 (1983).PubMedGoogle Scholar
  15. 15.
    D. P. Dialynas, Z. S. Quan, K. A. Wall, A. Pierres, J. Quintan, M. R. Loken, M. Pierres, and F. W. Fitch, Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Lue-3/T4 molecule, J. Immunol. 131: 2445 (1983).PubMedGoogle Scholar
  16. 16.
    A. L. Glasebrook, M. Sarmiento, M. R. Loken, D. P. Dialynas, J. Quintans, L. Eisenberg, C. T. Lutz, D. Wilde, and F. W. Fitch, Murine T lymphocyte clone with distinct immunological functions, Immuno. Rev. 54: 225 (1981).CrossRefGoogle Scholar
  17. 17.
    D. A. Morgan, F. W. Ruscetti, and R. Gallo, Selective in vitro growth of T lymphocytes from normal human bone marrows, Science 193: 1007 (1976).PubMedCrossRefGoogle Scholar
  18. 18.
    S. Gillis and K. A. Smith, Long term culture of tumor-specific cytotoxic T cells, Nature 268: 154 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    T. Suda, J. Suda, M. Ogawa, and J. M. Ihle, Permissive role of interleukin 3(IL 3) in proliferation and differentiation of multipotential hemopoietic progenitors in culture, J. Cell. Physiol. 124: 182 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    A. A. Nash and P. G. H. Gell, Membrane phenotype of murine effector and suppressor T cells involved in delayed hypersensitivity and protective immunity to herpes simplex virus, Cell. Immunol. 75: 348 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    R. D. Schrier, L. I. Pizer, and J. W. Moorhead, Type-specific delayed hypersensitivity and protective immunity induced by isolated herpes simplex virus glycoprotein, J. Immuni. 130: 1413 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Shigeru Kyuwa
    • 1
  • Kenjiro Yamaguchi
    • 1
  • Masanori Hayami
    • 1
  • Kosaku Fujiwara
    • 1
  1. 1.Department of Animal Pathology, Institute of Medical ScienceUniversity of TokyoMinato-ku, Tokyo 108Japan

Personalised recommendations