Coronaviruses pp 109-116 | Cite as

Surface Glycoproteins of Transmissible Gastroenteritis Virus: Functions and Gene Sequence

  • Denis Rasschaert
  • Bernard Delmas
  • Bernard Charley
  • Jeanne Grosclaude
  • Jacqueline Gelfi
  • Hubert Laude
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 218)


Transmissible gastroenteritis virus (TGEV) causes acute and highly contagious diarrheal syndrome in pigs, most often fatal for animals aged less than 2 weeks. Despite the intensive research efforts, no safe and efficient vaccine is available against this major porcine pathogen. The tropism of the causative agent to the differenciated enterocytes covering the intestine villi is responsible for the observed enteric disorders. It is assumed that the natural protection conferred by mothers, infected with wild virus, on their suckling piglets is due to the presence in the milk of mainly IgA type neutralizing antibodies induced by the virus peplomers. (see 1 for a review).


Escape Mutant Interferon Induction Intensive Research Effort Transmissible Gastroenteritis Virus Suckling Piglet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D.J. Garwes, Coronavirus in animals. In: “Virus Infections of the Gastrointestinal Tract”, pp 315–359. D.A.J. Tyrrel & A.Z. Kapikian eds. Marceli Dekker, New York — Basel. (1982).Google Scholar
  2. 2.
    D.J. Garwes, D.H. Pocock, The polypeptide structure of transmissible gastroenteritis virus. J. Gen. Virol. 29: 25–34. (1975).PubMedCrossRefGoogle Scholar
  3. 3.
    M. Horzinek, H. Lutz, N.C. Pedersen, Antigenic relationships among homologous structural polypeptides of porcine, feline and canine coronaviruses. Inf. Immun. 37: 1148–1155. (1982).Google Scholar
  4. 4.
    H. Laude, J.M. Chapsal, J. Gelfi, S. Labiau, J. Grosclaude, Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. J. Gen. Virol. 67: 119–130. (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    B. Delmas, G. Gelfi, H. Laude, Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. J. Gen. Virol. 67: 1405–1418. (1986).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Lebon, M.J. Commoy-Chevalier, B. Robert-Galliot, C. Chany, Different mechanisms for alpha and beta interferon induction. Virology 119: 504–507. (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    C. La Bonnardière, H. Laude, High interferon titer in newborn pig intestine during experimentally induced viral enteritis. Inf. Immun. 32: 28–31 (1981).Google Scholar
  8. 8.
    S. Zain, J. Sambrook, R.J. Roberts, W. Keller, M. Fried, A.R. Dunn, Nucleotide sequence analysis of the leader segments in a cloned copy of adenovirus 2 fiber mRNA. Cell. 16: 851–861. (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    S. Van der Werf, F. Bregegere, H. Kopecka, N. Kitamura, P.G. Rothberg, P. Kourilsky, E. Wimmer, M. Girard, P.N.A.S. 78: 5983–5987. (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    C.J. Budzilowicz, S.P. Wilczynski, S.R. Weiss, Three intergenic regions of coronavirus mouse hepatitis virus strain A 59 genome RNA contain a common nucleotide sequence that is homologous to the 3′end of the viral mRNA leader sequence. J. Virol. 53: 834–840. (1985).PubMedGoogle Scholar
  11. 11.
    S. Hu, J. Bruszewski, T. Boone, L. Souza, Cloning and expressing of the surface glycoprotein gp 195 of porcine transmissible gastroenteritis virus. In: “Modern approaches to Vaccines”, pp219-223. R.M. Chanock & L.A. Lerner eds. Cold. Spr. Harb. Lab. (1984).Google Scholar
  12. 12.
    L. Jacobs, B.A.M. Van der Zeijst, M.C. Horzinek, Characterization and translation of transmissible gastroenteritis virus mRNAs. J. Virol. 57: 1010–1015. (1986).PubMedGoogle Scholar
  13. 13.
    M.M. Binns, M.E.G. Boursnell, D. Cavanagh, D.J.C. Pappin, T.D.K. Brown, Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. J. Gen. Virol. 66: 713–726. (1985).CrossRefGoogle Scholar
  14. 14.
    D.J. McGeogh, On the predictive recognition of signal peptide sequences. Virus Research 3: 271–286. (1985).CrossRefGoogle Scholar
  15. 15.
    D. Cavanagh, P.J. Davis, D.J.C. Pappin, M.M. Binns, M.E.G. Boursnell, T.D.K. Brown, Coronavirus IBV: partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. Virus 4: 133–143. (1986).CrossRefGoogle Scholar
  16. 16.
    J. Armstrong, H. Niemann, S. Smeekens, P. Rottier, G. Warren, Sequence and topolology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature, 308: 751–752. (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    M.E.G. Boursnell, T.D.K. Brown, M.M. Binns, Sequence of the membrane protein gene from avian coronavirus IBV. Virus Res. 1: 303–313. (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    P. Rottier, G.M. Welling, S. Welling-Wester, H.G.M. Niesters, J.A. Lenstra, B.A.M. Van der Zeijst, Predicted membrane topology of the coronavirus protein El. Biochemistry 95: 1335–1339. (1986).CrossRefGoogle Scholar
  19. 19.
    D. Cavanagh, P.J. Davis, D.J.C. Pappin, Coronavirus IBV glycopeptides: locational studies using proteases and saponin, a membrane permeabilizer. Virus Res. 4: 145–156. (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Denis Rasschaert
    • 1
  • Bernard Delmas
    • 1
  • Bernard Charley
    • 1
  • Jeanne Grosclaude
    • 1
  • Jacqueline Gelfi
    • 1
  • Hubert Laude
    • 1
  1. 1.Agronomique Station de Recherches de Virologie et d’ImmunologieInstitut National de la RechercheThiveral-GrignonFrance

Personalised recommendations