Advertisement

Structure of Glycoproteins and Their Oligosaccharide Units

  • Rosalind Kornfeld
  • Stuart Kornfeld

Abstract

The presence of oligosaccharide chains covalently attached to the peptide backbone is the feature that distinguishes glycoproteins from other proteins and accounts for some of their characteristic physical and chemical properties. Glycoproteins occur in fungi, green plants, viruses, bacteria, and in higher animal cells where they serve a variety of functions. Connective tissue glycoproteins, such as the collagens and proteoglycans of various animal species, are structural elements as are the cell wall glycoproteins of yeasts and green plants. The submaxillary mucins and the glycoproteins in the mucous secretions of the gastrointestinal tract, which consist of numerous oligosaccharide chains attached at closely spaced intervals to a peptide backbone, serve as lubricants and protective agents. The body fluids of vertebrates are rich in glycoproteins secreted from various glands and organs. Constituents of blood plasma which are glycoproteins include the transport proteins transferrin, ceruloplasmin, and transcobalamin I as well as the immunoglobulins, all the known clotting factors, and many of the components of complement. Follicle-stimulating hormone, luteinizing hormone, and thyroid-stimulating hormone (secreted by the pituitary) and chorionic gonadotropin are all glycoproteins as are the enzymes ribonuclease and deoxyribonuclease (secreted by the pancreas) and α-amylase (secreted by the salivary glands). Fungi secrete a number of glycoprotein enzymes, for example, Taka-amylase and invertase. Another group of glycoproteins are those which occur as integral components of cell membranes in a variety of species. Enveloped viruses contain surface glycoproteins that are involved in the attachment of the virus to its host, and in eukaryotic cells the histocompatibility antigens are membrane glycoproteins. There is a growing body of evidence to suggest that cell surface glycoproteins are involved in a number of physiologically important functions such as cell-cell interaction, adhesion of cells to substratum, and migration of cells to particular organs, for example, the “homing” of lymphocytes to the spleen and the metastasis of tumor cells to preferred sites.

Keywords

Sialic Acid Sialic Acid Residue Mannose Residue Oligosaccharide Chain Vesicular Stomatitis Virus Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, A. K., and Neuberger, A., 1973, Purification and properties of the lectin from potato tubers, a hydroxyproline-containing glycoprotein, Biochem. J. 135:307.PubMedGoogle Scholar
  2. Allen, A. K., Desai, N. N., and Neuberger, A., 1976, The structure of a glycopeptide isolated from potato lectin, Abstracts of the 10th Int. Congress of Biochem., Hamburg, p. 503.Google Scholar
  3. Arima, T., and Spiro, R. G., 1972, Studies of the carbohydrate units of thyroglobulin, J. Biol. Chem. 247:1836.PubMedGoogle Scholar
  4. Baenziger, J. U., 1975, Determination of the complete sequence of the oligosaccharide units present on IgG, IgE, and IgA1 myeloma proteins, Ph.D. thesis, Washington University, St. Louis, Mo., 136 pp.Google Scholar
  5. Baenziger, J. U., and Fiete, D., 1979, Structure of the complex oligosaccharides of fetuin, J. Biol. Chem. 254:789.PubMedGoogle Scholar
  6. Baenziger, J., and Kornfeld, S., 1974a, Structure of the carbohydrate units of IgA1 immunoglobulin. I. Composition, glycopeptide isolation, and structure of the asparagine-linked oligosaccharide units, J. Biol. Chem. 249:7260.PubMedGoogle Scholar
  7. Baenziger, J., and Kornfeld, S., 1974b, Structure of the carbohydrate units of IgA1 immunoglobulin. II. Structure of the O-glycosidically linked oligosaccharide units, J. Biol. Chem. 249:7270.PubMedGoogle Scholar
  8. Baenziger, J., Kornfeld, S., and Kochwa, S., 1974, Structure of the carbohydrate units of IgE immunoglobulin. II. Sequence of the sialic acid-containing glycopeptides. J. Biol. Chem. 249:1897.PubMedGoogle Scholar
  9. Bahl, O. P., 1969, Human chorionic gonadotropin. II Nature of the carbohydrate units, J. Biol. Chem. 244:575.PubMedGoogle Scholar
  10. Bahl, O. P., Carlson, R. B., Bellisario, R., and Swaminathan, N., 1972, Human chorionic gonadotropin: Amino acid sequence of the α and β subunits, Biochem. Biophys. Res. Commun. 48:416.PubMedCrossRefGoogle Scholar
  11. Baig, M. M., and Aminoff, D., 1972, Glycoproteins and blood group activity. I. Oligosaccharides of serologically inactive hog submaxillary glycoproteins, J. Biol. Chem. 247:6111.PubMedGoogle Scholar
  12. Bertolini, M., and Pigman, W., 1970, The existence of oligosaccharides in bovine and ovine submaxillary mucins, Carbohydr. Res. 14:53.CrossRefGoogle Scholar
  13. Bhattacharyya, S. N., and Lynn, W. S. 1977, Structural studies on the oligosaccharides of a glycoprotein isolated from alveoli of patients with alveolar proteinosis, J. Biol. Chem. 252:1172.PubMedGoogle Scholar
  14. Bhavanandan, V. P., Umemoto, J., Banks, J. R., and Davidson, E. A., 1977, Isolation and partial characterization of sialoglycopeptides produced by a murine melanoma, Biochemistry 16:4426.PubMedCrossRefGoogle Scholar
  15. Björndal, H., Lindberg, B., and Svensson, S., 1967a, Gas-liquid chromatography of partially methylated alditols as their acetates, Acta Chem. Scand. 21:1801.CrossRefGoogle Scholar
  16. Björndal, H., Lindberg, B., and Svensson, S., 1967b, Mass spectrometry of partially methylated alditol acetates, Carbohydr. Res. 5:433.CrossRefGoogle Scholar
  17. Björndal, H., Hellerqvist, C. G., Lindberg, B., and Svensson, S., 1970, Gas-liquid chromatography and mass spectrometry in methylation analysis of polysaccharides, Angew. Chem. Int. Ed. Engl. 9:610.CrossRefGoogle Scholar
  18. Bray, B. A., Lieberman, R., and Meyer, K., 1967, Structure of human skeletal keratosulfate: The linkage region, J. Biol. Chem. 242:3373.PubMedGoogle Scholar
  19. Butler, W. T., and Cunningham, L. W., 1966, Evidence for the linkage of a disaccharide to hydroxylsine in tropocollagen, J. Biol. Chem. 241:3882.PubMedGoogle Scholar
  20. Carlson, D. M., 1968, Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins, J. Biol. Chem. 243:616.PubMedGoogle Scholar
  21. Chapman, A., and Kornfeld, R., 1979, Structure of the high mannose oligosaccharides of a human IgM myeloma protein, J. Biol. Chem. 254:816.PubMedGoogle Scholar
  22. Codington, J. F., Linsley, K. B., Jeanloz, R. W., Irimura, T., and Osawa, T., 1975, Immunochemical and chemical investigations of the structure of glycoprotein fragments obtained from epiglycanin, a glycoprotein at the surface of the TA-3Ha cancer cell, Carbohydr. Res. 40:171.PubMedCrossRefGoogle Scholar
  23. DeVries, A. L., Vandenheede, J., and Feeney, R. E., 1971, Primary structure of freezing-point-depressing glycoproteins, J. Biol. Chem. 246:305.PubMedGoogle Scholar
  24. Endo, Y., Yamashita, K., Han, Y. N., Iwanaga, S., and Kobata, A. 1977, The carbohy drate structure of a glycopeptide released by action of plasma kallikrein on bovine plasma high-molecular-weight kininogen, J. Biochem. Tokyo 82:545.PubMedGoogle Scholar
  25. Feizi, T., Kabat, E. A., Vicari, G., Anderson, B., and Marsh, W. L., 1971, Immunochemical studies on blood groups, J. Immunol. 106:1578.PubMedGoogle Scholar
  26. Finne, J., 1975, Structure of the O-glycosidically linked carbohydrate units of rat brain glycoproteins, Biochim. Biophys. Acta 412:317.PubMedGoogle Scholar
  27. Fournet, B., Montreuil, J., Strecker, G., Dorland, L., Haverkamp, J., Vliegenthart, J. F. G., Binette, J. P., and Schmid, K., 1978, Determination of the primary structures of 16 asialo-carbohydrate units derived from human plasma α1acid glycoprotein by 360-MHz 1H NMR spectroscopy and permethylation analysis, Biochemistry 17:5206.PubMedCrossRefGoogle Scholar
  28. Frangione, B., and Wolfenstein-Todel, C., 1972, Partial duplication in the “hinge” region of IgA1 myeloma proteins, Proc. Natl. Acad. Sci. U.S.A. 69:3673.PubMedCrossRefGoogle Scholar
  29. Fukuda, M., Kondo, T., and Osawa, T., 1976, Studies on the hydrazinolysis of glycoproteins, core structures of oligosaccharides obtained from porcine thyroglobulin and pineapple stem bromelain, J. Biochem. Tokyo 80:1223.PubMedGoogle Scholar
  30. Fukuda, M., Papermaster, D., and Hargrave, P. A., 1979, Rhodopsin carbohydrate: Structure of small oligosaccharides attached at two sites near the amino-terminus, J. Biol. Chem. 254:8201.PubMedGoogle Scholar
  31. Gibson, R., Schlesinger, S., and Kornfeld, S., 1979, The nonglycosylated glycoprotein of VSV is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures, J. Biol. Chem. 254:3600.PubMedGoogle Scholar
  32. Gottschalk, A. (ed.), 1972, Glycoproteins, 2nd ed., Elsevier, Amsterdam.Google Scholar
  33. Glockner, W. M., Newman, R. A., Dahr, W., and Uhlenbruck, G., 1976, Alkali-labile oligosaccharides from glycoproteins of different erythrocyte and milk fat globule membranes, Biochim. Biophys. Acta 443:402.PubMedCrossRefGoogle Scholar
  34. Hakomori, S., 1964, A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide, J. Biochem. Tokyo 55:205.PubMedGoogle Scholar
  35. Hallgren, P., Lundblad, A., and Svensson, S., 1975, A new type of carbohydrate protein linkage in a glycopeptide from normal human urine, J. Biol. Chem. 250:5312.PubMedGoogle Scholar
  36. Hara, K., Ruthnam, P., and Saxena, B., 1978, Structure of the carbohydrate moieties of α subunits of human follitropin, lutropin and thyrotropin, J. Biol. Chem. 253:1582.PubMedGoogle Scholar
  37. Heath, M. F., and Northcote, D. H., 1971, Glycoprotein of the wall of sycamore tissue-culture cells, Biochem. J. 125:952.Google Scholar
  38. Hickman, S., Kornfeld, R., Osterland, C. K., and Kornfeld S., 1972, The structure of the glycopeptides of a human γM-immunoglobulin, J. Biol. Chem. 247:2156.PubMedGoogle Scholar
  39. Higashi, H., Naiki, M., Matuo, S., and Okouchi K., 1977, Antigen of “serum sickness” type of antibodies in human sera: Identification as gangliosides with N-glycolyl-neuraminic acid, Biochem. Biophys. Res. Commun. 79:388.PubMedCrossRefGoogle Scholar
  40. Hirs, C. H. W., Moore, S., and Stein, W. H., 1960, The sequence of the amino acid residues in performic acid-oxidized ribonuclease, J. Biol. Chem. 235:633.PubMedGoogle Scholar
  41. Huang, C. C., Mayer, H. E., Jr., and Montgomery, R., 1970, Microheterogeneity and paucidispersity of glycoproteins. Part I. The carbohydrates of chicken ovalbumin, Carbohydr. Res. 13:127.CrossRefGoogle Scholar
  42. Hubbard, S. C., and Robbins, P. W., 1979, Synthesis and processing of protein-linked oligosaccharides in vivo, J. Biol. Chem. 254:4568.PubMedGoogle Scholar
  43. Hughes, R. C., 1973, Glycoproteins as components of cellular membranes, Prog. Biophys. Mol. Biol. 26:189.PubMedCrossRefGoogle Scholar
  44. Hunt, L. A., Etchison, J. R., and Summers, D. F., 1978, Oligosaccharide chains are trimmed during synthesis of the envelope glycoprotein of vesicular stomatitis virus, Proc. Natl. Acad. Sci. U.S.A. 75:754.PubMedCrossRefGoogle Scholar
  45. Isemura, M., Ikenaka, T., and Matsushima, Y., 1973, Comparative study of carbohydrate-protein complexes. I. The structures of glycopeptides derived from cuttlefish skin collagen, J. Biochem. Tokyo 74:11.PubMedGoogle Scholar
  46. Ito, S., Muramatsu, T., and Kobata, A., 1975, Release of galactosyl oligosaccharides by endo-β-N-acetylglucosaminidase D, Biochem. Biophys. Res. Commun. 63:938.PubMedCrossRefGoogle Scholar
  47. Ito, S., Yamashita, K., Spiro, R. G., and Kobata, A., 1977, Structure of a carbohydrate moiety of a unit A glycopeptide of calf thyroglobulin, J. Biochem. Tokyo 81:1621.PubMedGoogle Scholar
  48. Jackson, R. L., and Hirs, C. H. W., 1970a, The primary structure of porcine pancreatic ribonuclease. II. The amino acid sequence of the reduced S-aminoethylated protein, J. Biol. Chem. 245:637.PubMedGoogle Scholar
  49. Jackson, R. L., and Hirs, C. H. W., 1970b, The primary structure of porcine pancreatic ribonuclease. I. The distribution and sites of carbohydrate attachment, J. Biol. Chem. 245:624.PubMedGoogle Scholar
  50. Kawasaki, T., and Ashwell, G., 1976, Carbohydrate structure of glycopeptides isolated from an hepatic membrane-binding protein specific for asialoglycoproteins, J. Biol. Chem. 251:5292.PubMedGoogle Scholar
  51. Kieras, F. J., 1974, The linkage region of cartilage keratan sulfate, J. Biol. Chem. 249:7506.PubMedGoogle Scholar
  52. Koide, N., and Muramatsu, T., 1974, Endo-β-N-acetylglucosaminidase acting on carbohydrate moieties of glycoproteins: Purification and properties of the enzyme from Diplococcus pneumoniae, J. Biol. Chem. 249:4897.PubMedGoogle Scholar
  53. Koide, N., Nose, M., and Muramatsu, T., 1977, Recognition of IgG by Fc receptor and complement: Effects of glycosidase digestion, Biochem. Biophys. Res. Commun. 75:838.PubMedCrossRefGoogle Scholar
  54. Kondo, T., Fukuda, M., and Osawa, T., 1977, The structure of unit B-type glycopeptides from porcine thyroglobulin, Carbohydr. Res. 58:405.PubMedCrossRefGoogle Scholar
  55. Kornfeld, R., 1978, Structure of the oligosaccharides of three glycopeptides from calf thymocyte plasma membranes, Biochemistry 17:1415.PubMedCrossRefGoogle Scholar
  56. Kornfeld, R., and Kornfeld, S., 1970, The structure of phytohemagglutinin receptor site from human erythrocytes, J. Biol. Chem. 245:2536.PubMedGoogle Scholar
  57. Kornfeld, R., and Kornfeld, S., 1976, Comparative aspects of glycoprotein structure. Annu. Rev. Biochem. 45:217.PubMedCrossRefGoogle Scholar
  58. Kornfeld, R., Keller, J., Baenziger, J., and Kornfeld, S., 1971, The structure of the glycopeptide of human γG myeloma proteins, J. Biol. Chem. 246:3259.PubMedGoogle Scholar
  59. Kornfeld, S., and Kornfeld, R., 1971, The structure of phytohemagglutinin receptor sites, in: Glycoproteins of Blood Cells and Plasma (G. A. Jamieson and T. J. Greenwalt, eds.), pp. 50–68, Lippincott, Philadelphia.Google Scholar
  60. Kornfeld, S., Li, E., and Tabas, I., 1978, Characterization of the processing intermediates in the synthesis of the complex oligosaccharide unit of the vesicular stomatitis virus G protein, J. Biol. Chem. 253:7771.PubMedGoogle Scholar
  61. Krusius, T., Finne, J., and Rauvala, H., 1976, The structural basis of the different affinities of two types of acidic N-glycosidic glycopeptides for concanavalin A-Sepharose, FEBS Lett. 71:117.CrossRefGoogle Scholar
  62. Laine, R. A., Esselman, W. J., and Sweeley, C. C., 1972, Gas-liquid chromatography of carbohydrates, Methods Enzymol. 28B:159.CrossRefGoogle Scholar
  63. Lamport, D. T. A., 1969, The isolation and partial characterization of hydroxyproline-rich glycopeptides obtained by enzymic degradation of primary cell walls, Biochemistry 8:1155.PubMedCrossRefGoogle Scholar
  64. Lamport, D. T. A., Katona, L., and Roerig, S., 1973, Galactosylserine in extensin, Biochem. J. 135:125.Google Scholar
  65. Larriba, G., Klinger, M. Sramek, S., and Steiner, S. 1977, Novel fucose-containing components from rat tissues, Biochem. Biophys. Res. Commun. 77:79.PubMedCrossRefGoogle Scholar
  66. Leavitt, R., Schlesinger, S., and Kornfeld, S., 1977, Impaired intracellular migration and altered solubility of nonglycosylated glycoproteins of vesicular stomatitis virus and Sindbis virus, J. Biol. Chem. 252:9018.PubMedGoogle Scholar
  67. Lee, Y. C., 1972, Analysis of sugars by automated liquid chromatography, Methods Enzymol. 28B:63.CrossRefGoogle Scholar
  68. Lee, Y. C., and Scocca, J. R., 1972, A common structural unit in asparagine-oligosaccharides of several glycoproteins from different sources, J. Biol. Chem. 247:5753.PubMedGoogle Scholar
  69. Li, E., and Kornfeld, S., 1979, Structural studies of the major high mannose oligosaccharide units from Chinese hamster ovary cell glycoproteins, J. Biol. Chem. 254:1600.PubMedGoogle Scholar
  70. Li, E., Tabas, I., and Kornfeld, S., 1978, Structure of the lipid-linked oligosaccharide precursor of the complex-type oligosaccharides of the vesicular stomatitis virus G protein, J. Biol. Chem. 253:7762.PubMedGoogle Scholar
  71. Li, Y. T., and Lee, Y. C., 1972, Pineapple α-and β-D-mannopyranosidases and their action on core glycopeptides, J. Biol. Chem. 247:3677.PubMedGoogle Scholar
  72. Liang, C.-J., Yamashita, K., Muellenberg, C. G., Shichi, H., and Kobata, A., 1979, Structure of the carbohydrate moieties of bovine rhodopsin, J. Biol. Chem. 254:6414.PubMedGoogle Scholar
  73. Lombart, C. G., and Winzler, R. J., 1974, Isolation and characterization of oligosaccharides from canine submaxillary mucin, Eur. J. Biochem. 49:77.PubMedCrossRefGoogle Scholar
  74. Mahieu, P. M., Lambert, P. H., and Maghuin-Rogister, G. R., 1973, Primary structure of a small glycopeptide isolated from human glomerular basement membrane and carrying a major antigenic site, Eur. J. Biochem. 40:599.PubMedCrossRefGoogle Scholar
  75. Marks, G. S., Marshall, R. D., and Neuberger, A., 1963, Carbohydrates in protein. 6. Studies on the carbohydrate-peptide bond in hen’s egg albumin, Biochem. J. 87:274.PubMedGoogle Scholar
  76. Marshall, R. D., 1972, Glycoproteins, Annu. Rev. Biochem. 41:673.PubMedCrossRefGoogle Scholar
  77. Marshall, R. D., and Neuberger, A., 1964, Carbohydrates in protein. VIII. The isolation of 2-acetamide-l-(l-β-aspartamido)-1,2-dideoxy-β-D-glucose from hen’s egg albumin, Biochemistry 3:1596.PubMedCrossRefGoogle Scholar
  78. Michalski, J. C., Strecker, G., Fournet, B., Cantz, M., and Spranger, J., 1977, Structures of sialyl-oligosaccharides excreted in the urine of a patient with mucolipidosis I, FEBS Lett. 79:101.PubMedCrossRefGoogle Scholar
  79. Misaki, A., and Goldstein, I. J., 1977, Glycosyl moiety of the lima bean lectin, J. Biol. Chem. 252:6995.PubMedGoogle Scholar
  80. Mizuochi, T., Yamashita, K., Fujikawa, K., Kisiel, W., and Kobata, A., 1979, The carbohydrate of bovine prothrombin, J. Biol. Chem. 254:6419.PubMedGoogle Scholar
  81. Montreuil, J., 1975, Recent data on the structure of the carbohydrate moiety of glycoproteins—Metabolic and biologic implications, Pure Appl. Chem. 42:431.CrossRefGoogle Scholar
  82. Morell, A. G., and Ashwell, G., 1972, Tritium labeling of glycoproteins that contain terminal galactose residues, Methods Enzymol. 28B:205.CrossRefGoogle Scholar
  83. Morgan, P. H., Jacobs, H. G., Segrest, J. P. and Cunningham, L. W., 1970, A comparative study of glycoptroteins derived from selected vertebrate collagens, J. Biol. Chem. 245:5042.PubMedGoogle Scholar
  84. Muir, L., and Lee, Y. C., 1969, Structures of the D-galactose oligosaccharides from earthworm cuticle collagen, J. Biol. Chem. 244:2343.PubMedGoogle Scholar
  85. Muir, L, and Lee, Y. C., 1970, Glycopeptides from earthworm cuticle collagen, J. Biol. Chem. 245:502.PubMedGoogle Scholar
  86. Nakajima, T., and Ballou, C.E., 1974a, Characterization of the carbohydrate fragments obtained from Saccharomyces cerevisiaemannan by alkaline degradation, J. Biol. Chem. 249:7679.PubMedGoogle Scholar
  87. Nakajima, T., and Ballou, C. E., 1974b, Structure of the linkage region between the polysaccharide and protein parts of Saccharomyces cerevisiaemannan, J. Biol. Chem. 249:7685.PubMedGoogle Scholar
  88. Newman, R. A., Glockner, W. M., and Uhlenbruck, G., 1976, Immunochemical detection of the Thomsen-Friedenreich antigen (T-antigen) on the pig lymphocyte plasma membrane, Eur. J. Biochem. 64:373.PubMedCrossRefGoogle Scholar
  89. Ng Ying Kin, N. M. K., and Wolfe, L. S., 1974, Oligosaccharides accumulating in the liver from a patient with GM2-gangliosidosis variant O (Sandhoff-Jatzkewitz disease), Biochem. Biophys. Res. Commun. 59:837.PubMedCrossRefGoogle Scholar
  90. Nishigaki, M., Yamashita, K., Matsuda, I., Arashima, S., and Kobata, A., 1978, Urinary oligosaccharides of fucosidosis, J. Biochem. Tokyo 84:823.PubMedGoogle Scholar
  91. Oates, M. D., Rosbottom, A. C., and Schrager, J., 1974, Further investigations into the structure of human gastric mucin: The structural configuration of the oligosaccharide chains, Carbohydr. Res. 34:115.PubMedCrossRefGoogle Scholar
  92. Ogata, S., Muramatsu, T., and Kobata, A., 1975, Fractionation of glycopeptides by affinity column chromatography on concanavalin A-Sepharose, J. Biochem. Tokyo 78:687.PubMedGoogle Scholar
  93. Pazur, J. H., Knull, H. R., and Cepure, A., 1971, Glycoenzymes: Structure and properties of the two forms of glucoamylase from Aspergillus niger, Carbohydr. Res. 20:83.PubMedCrossRefGoogle Scholar
  94. Plummer, T. H., Jr., 1968, Glycoproteins of bovine pancreatic juice, J. Biol. Chem. 243:5961.PubMedGoogle Scholar
  95. Plummer, T. H., Jr., and Hirs, C. H. W., 1964, On the structure of bovine pancreatic ribonuclease B: Isolation of a glycopeptide, J. Biol. Chem. 239:2530.PubMedGoogle Scholar
  96. Puett, D., 1973, Conformational studies on a glycosylated bovine pancreatic ribonuclease, J. Biol. Chem. 248:3566.PubMedGoogle Scholar
  97. Purkayastha, S., Rao, C. V. N., and Lamm, M. E., 1979, Structure of the carbohydrate chain of free secretory component from human milk, J. Biol. Chem. 254:6583.PubMedGoogle Scholar
  98. Raizada, M. K., Schutzbach, J. S., and Ankel, H., 1975, Cryptococcus laurentiicell envelope glycoprotein, J. Biol. Chem. 250:3310.PubMedGoogle Scholar
  99. Reading, C. L., Penhoet, E. E., and Ballou, C. E., 1978, Carbohydrate structure of vesicular stomatitis virus glycoprotein, J. Biol. Chem. 253:5600.PubMedGoogle Scholar
  100. Richards, F. M., and Wyckoff, H. W., 1971, Bovine pancreatic ribonuclease, in: The Enzymes (P. D. Boyer, ed.), 3rd ed., Vol. 4, pp. 647–806, Academic Press, New York.Google Scholar
  101. Robbins, P. W., Hubbard, S. C., Turco, S. J., and Wirth, D. F., 1977, Proposal for a common oligosaccharide intermediate in the synthesis of membrane glycoproteins, Cell 11:893.CrossRefGoogle Scholar
  102. Robertson, M. A., Etchison, J. R., Robertson, J. S., Summers, D. F., and Stanley, P., 1978, Specific changes in the oligosaccharide moieties of VSV grown in different lectin-resistant CHO cells, Cell 13:515.PubMedCrossRefGoogle Scholar
  103. Rosenthal, A. L., and Nordin, J. H., 1975, Enzymes that hydrolyze fungal cell wall polysaccharides, J. Biol. Chem. 250:5295.PubMedGoogle Scholar
  104. Schwarz, R. T., Rohrschneider, J. M., and Schmidt, M. F. G., 1976, Suppression of glycoprotein formation of semliki forest, influenza, and avian sarcoma virus by tunicamycin, J. Virol. 19:782.PubMedGoogle Scholar
  105. Schwarzmann, G., Hatcher, V. B., and Jeanloz, R. W., 1978, Purification and structural elucidation of several carbohydrate side chains from α1acid glycoprotein, J. Biol. Chem. 253:6983.PubMedGoogle Scholar
  106. Sentandreu, R., and Northcote, D. H., 1969, The characterization of oligosaccharides attached to threonine and serine in a mannan glycopeptide obtained from the cell wall of yeast, Carbohydr. Res. 10:584.CrossRefGoogle Scholar
  107. Shier, W. T., Lin, Y., and De Vries, A. L., 1975, Structure of the carbohydrate of antifreeze glycoproteins from an Antarctic fish, FEBS Lett. 54:135.PubMedCrossRefGoogle Scholar
  108. Shimizu, A., Putnam, F. W., Paul, C., Clamp, J. R., and Johnson, I., 1971, Structure and role of the five glycopeptides of human IgM immunoglobulins, Nature (London), New Biol. 231:73.Google Scholar
  109. Silverton, E. W., Manuel, A. N., and Davies, D. R., 1977, Three-dimensional structure of an intact human immunoglobulin, Proc. Natl. Acad. Sci. U.S.A. 74:5740.CrossRefGoogle Scholar
  110. Spik, G., Bayard, B., Fournet, B., Strecker, G., Bouquelet, S., and Montreuil, J., 1975, Complete structure of the two carbohydrate units of human serotransferrin, FEBS Lett. 50:296.PubMedGoogle Scholar
  111. Spinola, M., and Jeanloz, R. W., 1970, The synthesis of a di-N-acetylchitobiose asparagine derivative, 2-acetamido-4-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-l-N-(4-L-aspartyl-2-deoxy-β-D-glucopyranosylamine, J. Biol. Chem. 245:4158.PubMedGoogle Scholar
  112. Spiro, R. G., 1966, Characterization of carbohydrate units of glycoproteins, Methods Enzymol. 8:26.CrossRefGoogle Scholar
  113. Spiro, R. G., 1967, The structure of the disaccharide unit of the renal glomerular basement membrane, J. Biol. Chem. 242:4813.PubMedGoogle Scholar
  114. Spiro, R. G. 1973, Glycoproteins, Adv. Protein Chem. 27:349.PubMedCrossRefGoogle Scholar
  115. Spiro, R. G., and Bhoyroo, V. D., 1971, The carbohydrate of invertebrate collagens: A glucuronic acid-mannose disaccharide unit, Fed. Proc. 30:1223.Google Scholar
  116. Spiro, R. G., and Bhoyroo, V. D., 1974, Structure of the O-glycosidically linked carbohydrate units of fetuin, J. Biol Chem. 249:5704.PubMedGoogle Scholar
  117. Strecker, G., Fournet, B., Spik, G., Montreuil, J., Durand, P., and Tondeur, M., 1977, Structure of 9 oligosaccharides and glycopeptides rich in fucose excreted in the urine of two patients with fucosidosis, C. R. Acad. Sci. (Paris) 284D:85.Google Scholar
  118. Sugahara, K., Okumura, T., and Yamashina, I., 1972, Purification of β-mannosidase from a snail, Achatina fulica, and its action on glycopeptides, Biochim. Biophys. Acta 268:488.PubMedGoogle Scholar
  119. Sugahara, K., Funakoshi, S., Funakoshi, I., Aula, P., and Yamashina, I., 1976, Characterization of one neutral and two acidic glycoasparagines isolated from the urine of patients with asparatyl-glycosylaminuria, J. Biochem. Tokyo 80:195.PubMedGoogle Scholar
  120. Sukeno, T., Tarentino, A. L., Plummer, T. H., Jr., and Maley, F., 1971, On the nature of α-mannosidase-resistant linkages in glycoproteins, Biochem. Biophys. Res. Commun. 45:219.PubMedCrossRefGoogle Scholar
  121. Sukeno, T., Tarentino, A. L., Plummer, T. H., Jr., and Maley, F., 1972, Purification and properties of α-Dand β-D-mannosidases from hen oviduct, Biochemistry 11:1493.PubMedCrossRefGoogle Scholar
  122. Tabas, I., and Kornfeld, S., 1978, Identification of an α-D-mannosidase activity involved in a late stage of processing of complex-type oligosaccharides, J. Biol. Chem. 253:7779.PubMedGoogle Scholar
  123. Tabas, I., Schlesinger, S., and Kornfeld, S., 1978, The processing of high mannose oligosaccharides to form complex type oligosaccharides in the newly synthesized polypep-tides of the vesicular stomatitis virus G protein and the IgG heavy chain, J. Biol. Chem. 253:716.PubMedGoogle Scholar
  124. Tai, T., Ito, S., Yamashita, K., Muramatsu, T., and Kobata, A., 1975a, Asparagine-linked oligosaccharide chains of IgG: A revised structure, Biochem. Biophys. Res. Commun. 65:968.PubMedCrossRefGoogle Scholar
  125. Tai, T., Yamashita, K., Ogata-Arakawa, M., Koide, N., Muramatsu, T., Iwashita, S., Inoue, Y., and Kobata, A., 1975b, Structural studies of two ovalbumin glycopeptides in relation to the endo-β-N-acetylglucosaminidase specificity, J. Biol. Chem. 250:8569.PubMedGoogle Scholar
  126. Tai, T., Yamashita, K., Ito, S., and Kobata, A., 1977a, Structures of the carbohydrate moiety of ovalbumin glycopeptide III and the difference in specificity of endo-β-N-acetylglucosaminidases CII and H, J. Biol. Chem. 252:6687.PubMedGoogle Scholar
  127. Tai, T., Yamashita, K., and Kobata, A., 1977b, The substrate specificities of endo-β-N-acetylglucosaminidases CII and H, Biochem. Biophys. Res. Commun. 78:434.PubMedCrossRefGoogle Scholar
  128. Tarentino, A. L., and Maley, F. 1974, Purification and properties of an endo-β-N-acetyl-glucosaminidase from Streptomyces griseus, J. Biol. Chem. 249:811.PubMedGoogle Scholar
  129. Tarentino, A. L., and Maley, F., 1976, Purification and properties of an endo-β-N-acetyl-glucosaminidase from hen oviduct, J. Biol. Chem. 251:6537.PubMedGoogle Scholar
  130. Tarentino, A., Plummer, T. H., Jr., and Maley, F., 1970, Studies on the oligosaccharide sequence of ribonuclease B, J. Biol. Chem. 245:4150.PubMedGoogle Scholar
  131. Tarentino, A. L., Plummer, T. H., and Maley, F., 1974, The release of intact oligosaccharides from specific glycoproteins by endo-β-N-acetylglucosaminidase H, J. Biol. Chem. 249:818.PubMedGoogle Scholar
  132. Thomas, D. B., and Winzler, R. J., 1969, Structural studies on human erythrocyte glycoproteins: Alkali-labile oligosaccharides, J. Biol. Chem. 244:5943.PubMedGoogle Scholar
  133. Thomas, D. B., and Winzler, R. J., 1971, Structure of glycoproteins of human erythrocytes: Alkali-stable oligosaccharides, Biochem. J. 124:55.PubMedGoogle Scholar
  134. Toyoshima, S., Fukuda, M., and Osawa, T., 1972, Chemical nature of the receptor site for various phytomitogens, Biochemistry 11:4000.PubMedCrossRefGoogle Scholar
  135. Toyoshima, S., Fukuda, M., and Osawa, T., 1973, The presence of β-mannosidic linkage in acidic glycopeptide from porcine thyroglobulin, Biochem. Biophys. Res. Commun. 51:945.PubMedCrossRefGoogle Scholar
  136. Tsay, G. C., Dawson, G., and Sung, S.-S. J., 1975, Structure of the accumulating oligosaccharide in fucosidosis, J. Biol. Chem. 251:5852.Google Scholar
  137. Van Lenten, L., and Ashwell, G., 1972, Tritium-labeling of glycoproteins that contain sialic acid, Methods Enzymol. 28B:209.CrossRefGoogle Scholar
  138. Wang, C. F. F., and Hirs, C. H. W., 1977, Influence of the heterosaccharides in porcine pancreatic ribonuclease on the conformation and stability of the protein, J. Biol. Chem. 252:8358.PubMedGoogle Scholar
  139. Watkins, W. M., 1972, Blood-group specific substances, in: Glycoproteins(A. Gottschalk, ed.), 2nd ed., Part B, p. 830, Elsevier, Amsterdam.Google Scholar
  140. Wolfe, L. S., Senior, R. G., and Ng Ying Kin, N. M. K., 1974, The structures of oligosaccharides accumulating in the liver of GM1-gangliosidosis, type I, J. Biol. Chem. 249:1828.PubMedGoogle Scholar
  141. Yamaguchi, H., Ikenaka, T., and Matsushima, Y., 1971, The complete sequence of a glycopeptide obtained from Taka-amylase A, J. Biochem. Tokyo 70:587.PubMedGoogle Scholar
  142. Yamashita, K., Tachibana, Y., and Kobata, A., 1978, The structures of the galactose-containing sugar chains of ovalbumin, J. Biol. Chem. 253:3862.PubMedGoogle Scholar
  143. Yasuda, Y., Takahashi, N., and Murachi, T., 1970, The composition and structure of carbohydrate moiety of stem bromelain, Biochemistry 9:25.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Rosalind Kornfeld
    • 1
  • Stuart Kornfeld
    • 1
  1. 1.Department of MedicineWashington University School of MedicineSt. LouisUSA

Personalised recommendations