Advertisement

Survey of Rate Constants in the N/H/O System

  • Ronald K. Hanson
  • Siamak Salimian
Chapter

Abstract

Current interest in high-temperature N/H/O kinetics stems primarily from the practical importance of combustion-generated emissions of nitrogen oxides (NOx). The recognition of air pollution as a problem of societal concern has prompted a concentrated research effort on the kinetics of NOx formation and decomposition and has led to a considerable expansion in the fundamental data base for rate constants of elementary reactions in the N/H/O system. The objectives of this survey are twofold: (1) to provide critical rate constant evaluations of reactions for which high-temperature data have been recently acquired, with due consideration given to previous evaluations, particularly the widely used survey at Leeds University (Baulch, et al., 1973); and (2) to provide an extensive compilation of N/H/O reactions and rate constants including both nonevaluated and evaluated reactions, that is, reactions for which limited or no rate data are available currently as well as reactions which have undergone critical reviews previously or in this study.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, E. A. et al. (1975). 15th Int. Symp. Combust, Combustion Institute, Pittsburgh, pp. 765–773.Google Scholar
  2. Ando, H. & Asaba, T. (1976). Int. J. Chem. Kinet. 8, 259–275.CrossRefGoogle Scholar
  3. Balakhnine, V. P, Vandooren, J, & Van Tiggelen, P. J. (1977). Combust. Flame 28, 165–173.CrossRefGoogle Scholar
  4. Baulch, D. L, Drysdale, D. D, & Horne, D. G. (1969). Report No. 5, Dept, of Physical Chemistry, The University of Leeds.Google Scholar
  5. Baulch, D. L, Drysdale, D. D, & Horne, D. G. (1973). Evaluated Kinetic Data for High Temperature Reactions, Vol. 2, Butterworths, London.Google Scholar
  6. Baulch, D. L. et al. (1976). Evaluated Kinetic Data for High Temperature Reactions, Vol. 3, Butterworths, London.Google Scholar
  7. Benson, S. W. et al. (1975). Environmental Protection Agency, Washington, D.C. Report No. EPA-600/2-75-019.Google Scholar
  8. Benson, S. W. (1981). 18th Int. Symp. Combust, Combustion Institute, Pittsburgh, p. 882.Google Scholar
  9. Binkley, J. S. & Melius, C. F. (1982). Paper No. WSS/CI 82-96, Fall Meeting of the Western States Section of the Combustion Institute.Google Scholar
  10. Blauwens, J, Smets, B, & Peeters, J. (1977). 16th Int. Symp. Combust, Combustion Institute, Pittsburgh, pp. 1055–1064.Google Scholar
  11. Bowman, C. T. (1971). Combust. Sci. Technol. 3, 37–45.CrossRefGoogle Scholar
  12. Bradley, J. N. & Craggs, X. (1975). 15th Int. Symp. Combust, Combustion Institute, Pittsburgh, pp. 833–842.Google Scholar
  13. Camac, M. & Feinberg, R. M. (1967). 11th Int. Symp. Combust, Combustion Institute, Pittsburgh, pp. 137–145.Google Scholar
  14. Campbell, I. M. & Thrush, B. A. (1968). Trans. Faraday Soc. 64, 1265–1274.CrossRefGoogle Scholar
  15. Chase, M. W, Jr. et al. (1982). J. Phys. Chem. Ref. Data 11, 695–940.CrossRefGoogle Scholar
  16. Clark, T. C, Garnett, S. H, & Kistiakowsky, G. B. (1969). J. Chem. Phys. 51, 2885–91.CrossRefGoogle Scholar
  17. Clyne, M. A. A. & McDermid, J. S. (1975). J. Chem. Soc. Faraday Trans. I 71, 2189–2202.CrossRefGoogle Scholar
  18. Clyne, M. A. A. & Thrush, B. A. (1961a). Proc. Royal Soc. A. 261, 259–273.CrossRefGoogle Scholar
  19. Clyne, M. A. A. & Thrush, B. A. (1961b). Nature 189, 56–57.CrossRefGoogle Scholar
  20. Dean, A. M. (1976). Int. J. Chem. Kinet. 8, 459–474.CrossRefGoogle Scholar
  21. Dean, A. M. & Steiner, D. C. (1977). J. Chem. Phys. 66, 598–604.CrossRefGoogle Scholar
  22. Dean, A. M., Steiner, D. C., & Wang, E. E. (1978). Combust. Flame 32, 73–83.CrossRefGoogle Scholar
  23. Dean, A. M., Hardy, J. E., & Lyon, R. K. (1981). Submitted to 15th Int. Symp. on Free Radicals.Google Scholar
  24. Dove, J. E. & Nip, W. S. (1974). Can. J. Chem. 52, 1171–1180.CrossRefGoogle Scholar
  25. Dove, J. E. & Nip, W. S. (1979). Can. J. Chem. 57, 689–701.CrossRefGoogle Scholar
  26. Dove, J. E., Nip, W. S., & Teitelbaum, H. (1975). 15th Int. Symp. Combust., Combustion Institute, Pittsburgh, pp. 903–916.Google Scholar
  27. Duff, R. E. & Davidson, N. (1959). J. Chem. Phys. 31, 1018–1027.CrossRefGoogle Scholar
  28. Duxbury, J. & Pratt, N. H. (1975). 15th Int. Symp. Combust., Combustion Institute, Pittsburgh, pp. 843–855.Google Scholar
  29. Endo, H., Glanzer, K, & Troe, J. (1979). J. Phys. Chem. 83, 2083–2090.CrossRefGoogle Scholar
  30. Fenimore, C. P. & Jones, G. W. (1962). 8th Int. Symp. Combust., Williams and Wilkins, Baltimore, pp. 127–133.Google Scholar
  31. Engleman, V. S. (1976). Environmental Protection Agency, Washington, D. C. Report No. EPA-600/2-76-003.Google Scholar
  32. Flower, W. L., Hanson, R. K., & Kruger, C. H. (1975). 15th Int. Symp. Combust., Combustion Institute, Pittsburgh, pp. 823–832.Google Scholar
  33. Flower, W. L., Hanson, R. K., & Kruger, C. H. (1977). Combust. Sci. Technol. 15, 115–128.CrossRefGoogle Scholar
  34. Freedman, E. & Daiber, J. W. (1961). J. Chem. Phys. 34, 1271–1278.CrossRefGoogle Scholar
  35. Fujii, N. et al (1981). 18th Int. Symp. Combust., Combustion Institute, Pittsburgh, pp. 873–883.Google Scholar
  36. Gehring, V. M. et al (1971). Ber. Bunsenges Phys. Chem. 75, 1287–1294.CrossRefGoogle Scholar
  37. Gehring, V. M. et al (1973). 14th Int. Symp. Combust., Combustion Institute, Pittsburgh, pp. 99–105.Google Scholar
  38. Glanzer, K. & Troe, J. (1975). Ber. Bunsenges Phys. Chem. 79, 465–469.CrossRefGoogle Scholar
  39. Glick, H. S., Klein, J. J., & Squire, W. (1957). J. Chem. Phys. 27, 850–857.CrossRefGoogle Scholar
  40. Gordon, S., Mulac, W., & Nangia, P. (1971). J. Phys. Chem. 75, 2087–2093.CrossRefGoogle Scholar
  41. Hack, V. W., Hoyermann, K., & Wagner, H. Gg. (1974). Ber Bunsenges Phys. Chem. 78, 386–391.Google Scholar
  42. Hack, V. W. et al (1979). 17th Int. Symp. Combust., Combustion Institute, Pittsburgh, pp. 505–513.Google Scholar
  43. Hancock, G. et al (1975). Chem. Phys. Lett. 33, 168–172.CrossRefGoogle Scholar
  44. Hansen, I. et al (1976). Chem. Phys. Lett. 42, 370–372.CrossRefGoogle Scholar
  45. Hanson, R. K., Flower, W. L., & Kruger, C. H. (1974). Combust. Sci. Technol. 9, 79–86.CrossRefGoogle Scholar
  46. Harris, G. W., Atkinson, R., & Pitts, J. N. (1979). J. Phys. Chem. 83, 2557–2559.CrossRefGoogle Scholar
  47. Harris, R. J., Nasralla, M., & Williams, A. (1976). Combust. Sci. Technol. 14, 85–94.CrossRefGoogle Scholar
  48. Henrici, M. (1966). Ph.D. thesis, University of Gottingen, Gottingen.Google Scholar
  49. Holzrichter, K. (1980). Ph.D. thesis, Gottingen, Germany.Google Scholar
  50. Holzrichter, K. & Wagner, H. Gg. (1981). 18th Int. Symp. Combust., Combustion Institute, Pittsburgh, pp. 769–775.Google Scholar
  51. Howard, C. J. (1980). J. Am. Chem. Soc. 102, 6937–6941.CrossRefGoogle Scholar
  52. JANAF Thermochemical Tables (1971). D. R. Stull & H. Prophet, Project Directors, Nat. Bur. Stand, Washington, D. C.:NBS37, 2nd Ed.Google Scholar
  53. Kaufman, F. & Decker, L. J. (1959). 7th Int. Symp. Combust, Butterworths, London, pp. 57–60.Google Scholar
  54. Kaufmann, F. & Kelso, J. (1955). J. Chem. Phys. 23, 1702–1707.CrossRefGoogle Scholar
  55. Koshi, M. et al. (1975). 15th Int. Symp. Combust, Combustion Institute, Pittsburgh, pp. 809–822.Google Scholar
  56. Koshi, M. et al. (1979). 17th Int. Symp. Combust, Combustion Institute, Pittsburgh, pp. 553–562.Google Scholar
  57. Leonard, P. A, Plee, S. L.,& Mellor, A. M.(1976). Combust. Sci. Technol. 14, 183–193.CrossRefGoogle Scholar
  58. Lesclaux, R. et al. (1975). Chem. Phys. Lett. 35, 493–497.CrossRefGoogle Scholar
  59. Livesey, J. B, Roberts, A. L, & Williams, A. (1971). Combust. Sci. Technol. 4, 9–15.CrossRefGoogle Scholar
  60. Louge, M. Y. & Hanson, R. K. (1981) (unpublished).Google Scholar
  61. Lyon, R. K. (1975). U. S. Patent No. 3900554.Google Scholar
  62. Lyon, R. K. (1976). Int. J. Chem. Kinet. 8, 315–318.CrossRefGoogle Scholar
  63. McCullough, R. W, Kruger, C. H, & Hanson, R. K. (1977). Combust. Sci. Technol. 15, 213–223.CrossRefGoogle Scholar
  64. Michel, K. W. (1965). 10th Int. Symp. Combust, Combustion Institute, Pittsburgh, p. 351.Google Scholar
  65. Miller, J. A, Branch, M. C, & Kee, R. J. (1981). Combust. Flame 43, 81–98.CrossRefGoogle Scholar
  66. Miller, J. A. (1982). Paper No. WSS/CI 82-93, Fall Meeting of the Western States Section of the Combustion Institute.Google Scholar
  67. Monat, J. P. (1977). Ph.D. thesis. Stanford University, Stanford, California.Google Scholar
  68. Monat, J. P., Hanson, R. K, & Kruger, C. H. (1977). Combust. Sci. Technol. 16, 21–28.CrossRefGoogle Scholar
  69. Monat, J. P, Hanson, R. K, & Kruger, C. H. (1979). 17th Int. Symp. Combust, Combustion Institute, Pittsburgh, pp. 543–552.Google Scholar
  70. Morley, C. (1981). 18th Int. Symp. Combust, Combustion Institute, Pittsburgh, pp. 23–32.Google Scholar
  71. Muzio, L. J. & Arand, J. K. (1976). Electric Power Research Inst, Palo Alto, CA. Report No. FP-253.Google Scholar
  72. Muzio, L. J, Arand, J. K, & Teixeira, D. P. (1977). 16th Int. Symp. Combust, Combustion Institute, Pittsburgh, pp. 199–208.Google Scholar
  73. Myerson, A. L. (1973). 14th Int. Symp. Combust, Combustion Institute, Pittsburgh, pp. 219–228.Google Scholar
  74. Newhall, H. K. & Shahed, S. M. (1970). 13th Int. Symp. Combust, Combustion Institute, Pittsburgh, pp. 381–389.Google Scholar
  75. Niemitz, K. J, Wagner, H. Gg, & Zellner, R. (1981). Z. Phys. Chem. Neue Folge 124, 155–170.CrossRefGoogle Scholar
  76. Nip, W. S. (1974). Ph.D. thesis, University of Toronto, Toronto, Canada.Google Scholar
  77. Olschewski, H. A, Troe, J, & Wagner, H. Gg. (1966). Ber. Bunsenges Phys. Chem. 70, 450–459.Google Scholar
  78. Perry, R. A., Atkinson, R., & Pitts, J. N. (1976). J. Chem. Phys. 64, 3237–3239.CrossRefGoogle Scholar
  79. Peterson, R. C. (1981). Ph.D. thesis. Purdue University, West Lafayette.Google Scholar
  80. Phillips, L. F. & Schiff, H. I. (1965). J. Chem. Phys. 42, 3171–3174.CrossRefGoogle Scholar
  81. Piper, L. G. (1979). J. Chem. Phys. 70, 3417–3419.CrossRefGoogle Scholar
  82. Pouchan, C. & Chaillet, M. (1982). Chem. Phys. Lett. 90, 310–316.CrossRefGoogle Scholar
  83. Roose, T. R., Hanson, R. K., & Kruger, C. H. (1980). Proc. 12th Int. Symp. Shock Tubes and Waves, Magnus, Hebrew Univ. Press, Jerusalem, pp. 476–485.Google Scholar
  84. Roose, T. R. (1981). Ph.D. thesis. Stanford University, Stanford, California.Google Scholar
  85. Roose, T. R., Hanson, R. K., & Kruger, C. H. (1981). 18th Int. Symp. Combust., Combustion Institute, Pittsburgh, pp. 853–862.Google Scholar
  86. Roth, P. & Just, T. (1977). Ber. Bunsenges Phys. Chem. 81, 572–577.CrossRefGoogle Scholar
  87. Salimian, S. & Hanson, R. K. (1980). Combust. Sci. Technol. 23, 225–230.CrossRefGoogle Scholar
  88. Salimian, S., Hanson, R. K., & Kruger, C. H. (1983). Int. J. Chem. Kinet, in press.Google Scholar
  89. Seery, D. J. & Zabielski, M. F. (1980). Laser Probes for Combustion Chemistry, American Chem. Society, Washington, D. C., pp. 375–380.CrossRefGoogle Scholar
  90. Silver, J. A. & Kolb, C. E. (1980). Chem. Phys. Lett. 75, 191–195.CrossRefGoogle Scholar
  91. Silver, J. A., Gozewski, C. M., & Kolb, C. E. (1980). Western State Section, The Combustion Inst. Paper No. 80-41, Los Angeles, California.Google Scholar
  92. Silver, J. A. (1981). Opt. Eng. 20, 540–545.CrossRefGoogle Scholar
  93. Smith, G. P., Crosley, D. R. (1981). 18th Int. Symposium Combust., Combustion Institute, Pittsburgh, pp. 1511–1520.Google Scholar
  94. Smith, I. W. M. & Zellner, R. (1975). Int. J. Chem. Kinet., Symp. 1, 341–351.Google Scholar
  95. Sulzmann, K. G. P., Kline, J. M., & Penner, S. S. (1980). Proc. 12th Int. Symp. Shock Tubes and Waves, Magnus, Hebrew University Press, Jerusalem, pp. 465–475.Google Scholar
  96. Thompson, D., Brown, T. D., & Beer, J. M. (1972). Combust. Flame 19, 69–79.CrossRefGoogle Scholar
  97. Troe, J. (1975). Proc. 10th. Int. Symp. Shock Tubes and Waves, Shock Tube Research Society Japan, Kyoto, pp. 29–51.Google Scholar
  98. Vetter, K. (1949). Z. Electrochem. 53, 369–376.Google Scholar
  99. Waldman, C. H, Wilson, R. D., & Maloney, K. L. (1974). EPA Report No. EPA-650/2-74-045.Google Scholar
  100. Westbrook, C. K. & Dryer, F. L. (1981). 18th Int. Symposium Combust., Combustion Institute, Pittsburgh, pp. 749–767.Google Scholar
  101. Westley, F. (1980). Nat. Bureau of Standards, Washington D. C. Report No. NSRDS-NBS 67.Google Scholar
  102. Wray, K. L. & Teare, J. D. (1962). J. Chem. Phys. 36, 2582–2596.CrossRefGoogle Scholar
  103. Yumura, M. & Asaba, T. (1981). 18th Int. Symposium Combust., Combustion Institute, Pittsburgh, pp. 863–872.Google Scholar
  104. Zeldovich, Ya. B. (1946). Acta Physiochim. U.R.S.S. 21, 577–628.Google Scholar
  105. Zellner, R. & Smith, I. W. M. (1974). Chem. Phys. Lett. 26, 72–74.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1984

Authors and Affiliations

  • Ronald K. Hanson
  • Siamak Salimian

There are no affiliations available

Personalised recommendations