Matrix Methods for Avian Demography

  • David B. McDonald
  • Hal Caswell
Part of the Current Ornithology book series (CUOR, volume 10)

Abstract

Demography is a tool for understanding population-level dynamics in terms of events (birth, death, maturation, etc.) at the level of the individual. Demographic models are a critical component of theory in population genetics, life history evolution, mating systems, and population biology. Demography is of fundamental concern to conservation biology; the demographic rather than genetic consequences of rarity may be the imminent threat to species facing rapid habitat destruction in many parts of the world (Lande, 1988b).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, S. J., 1983, Sexual selection: the interface of theory and empiricism, in: Mate Choice ( P. P. G. Bateson, ed.), Cambridge University Press, Cambridge, pp. 67–107.Google Scholar
  2. Arnold, S. J., and Wade, M. J., 1984a, On the measurement of natural and sexual selection: theory, Evolution 38: 709–719.CrossRefGoogle Scholar
  3. Arnold, S. J., and Wade, M. J., 1984b, On the measurement of natural and sexual selection: applications, Evolution 38: 720–734.CrossRefGoogle Scholar
  4. Brownie, C., Anderson, D. R., Burnham, K. P., and Robson, D. S., 1985, Statistical Inference from Band Recovery Data: A Handbook, 2nd ed., U. S. Department of the Interior, Fish, and Wildlife Service, Resource Publ. No. 156, Washington, D. C.Google Scholar
  5. Capildeo, R., and Haldane, J. B. S., 1954, The mathematics of bird population growth and decline, J. Anim. Eco1. 23: 215–223.CrossRefGoogle Scholar
  6. Caswell, H., 1982, Life history theory and the equilibrium status of populations, Am. Nat. 120: 317–339.Google Scholar
  7. Caswell, H., 1989a, The analysis of life table response experiments. I. Decomposition of treatment effects on population growth rate, Ecol. Model. 46: 221–238.Google Scholar
  8. Caswell, H., 1989b, Matrix Population Models, Sinauer, Sunderland, MA.Google Scholar
  9. Caswell, H., and Weeks, D. E., 1986, Two-sex models: chaos, extinction, and other dynamic consequences of sex, Am. Nat. 128: 707–735.Google Scholar
  10. Caughley, G., 1977, Analysis of Vertebrate Populations, Wiley, New York.Google Scholar
  11. Charlesworth, B., 1980, Evolution in Age Structured Populations, Cambridge University Press, Cambridge.Google Scholar
  12. Clobert, J., and Lebreton, J. -D., 1991, Estimation of demographic parameters in bird populations, in: Bird Population Studies: Relevance to Conservation and Management (C. M. Perrins, J. -D. Lebreton, and G. J. M. Hirons), Oxford University Press, Oxford, pp. 75–104.Google Scholar
  13. Cochran, M. E., and Ellner, S., 1992, Simple methods for calculating age-based life history parameters for stage-structured populations, Ecol. Monogr. 62: 345–354.CrossRefGoogle Scholar
  14. Cohen, J. E., 1987, Stochastic demography, Encycl. of Stat. Sci. 8: 789–801.Google Scholar
  15. Cooke, D., and Leon, J. A., 1976, Stability of population growth determined by 2 x 2 Leslie matrix with density-dependent elements, Biometrics 32: 435–442.PubMedCrossRefGoogle Scholar
  16. Crandall, R. E., and Colgrove, M. M., 1986, Scientific Programming with MAC Pascal: Self-Teaching Guide, Wiley, New York.Google Scholar
  17. Crouse, D. T., Crowder, L. B., and Caswell, H., 1987, A stage-based population model for loggerhead sea turtles and implications for conservation, Ecology 68: 1412–1423.CrossRefGoogle Scholar
  18. Croxall, J. P., Rothery, P., Pickering, S. P. C., and Prince, P. A., 1990, Reproductive performance, recruitment and survival of Wandering Albatrosses Diomedea exuJans at Bird Island, South Georgia, J. Anim. Ecol. 59: 775–796.Google Scholar
  19. DeAngelis, D. L., Svoboda, L. J., Christensen, S. W., and Vaughan, D. S., 1980, Stability and return times of Leslie matrices with density-dependent survival: applications to fish populations, Ecol. Model. 8: 149–163.Google Scholar
  20. Fitzpatrick, J. W., and Woolfenden, G. E., 1989, Florida Scrub Jay, in Lifetime Reproduction in Birds ( I. Newton, ed.), Academic Press, New York, pp. 201–218.Google Scholar
  21. Gani, J., 1973, Stochastic formulations for life tables, age distributions and mortality curves, in: The Mathematical Theory of the Dynamics of Biological Populations, Academic Press, New York, pp. 291–302.Google Scholar
  22. Getz, W. M., and Haight, R. G., 1989, Population Harvesting: Demographic Models of Fish, Forest, and Animal Resources, Princeton University Press, Princeton, NJ.Google Scholar
  23. Goodman, L. A., 1967, On the reconciliation of mathematical theories of population growth, J. Royal Stat. Soc. 130: 541–553.Google Scholar
  24. Henny, C. J., Overton, W. S., and Wight, H. M., 1970, Determining parameters for populations by using structural models, f. Wildl. Manage. 34: 690–703.CrossRefGoogle Scholar
  25. Hubbell, S. P., and Werner, P. A., 1979, On measuring the intrinsic rate of increase of populations with heterogeneous life histories, Am. Nat. 113: 277–293.Google Scholar
  26. Jenkins, S. H., 1988, Use and abuse of demographic models of population growth, Bull. Ecol. Soc. Am. 69: 201–207.Google Scholar
  27. Karr, J. R., Nichols, J. D., Klimkiewicz, M. K., and Brawn, J. D., 1990, Survival rates of birds of tropical and temperate forests: will the dogma survive ? Am. Nat. 136: 277–291.CrossRefGoogle Scholar
  28. Keyfitz, N., 1967, Reconciliation of population models: matrix, integral equation and partial fraction, J. R. Stat. Soc. 130: 61–83.Google Scholar
  29. Kosinski, R. J., and Podolsky, R. H., 1979, An analysis of breeding and mortality in a maturing Kittiwake colony, Auk 96: 537–543.Google Scholar
  30. Kroon, H., de, Plaisier, A., van Groenendael, J., and Caswell, H., 1986, Elasticity: The relative contribution of demographic parameters to population growth rate, Ecology 67: 1427–1431.Google Scholar
  31. Lande, R., 1982a, A quantitative genetic theory of life history evolution, Ecology 63: 607–615.CrossRefGoogle Scholar
  32. Lande, R., 1982b, Elements of a quantitative genetics model of life history evolution, in: Evolution and Genetics of Life Histories ( H. Dingle, and J. P. Hegmann, eds.), Springer-Verlag, New York, pp. 21–29.Google Scholar
  33. Lande, R., 1988a, Demographic models of the Northern Spotted Owl ( Strix occidentalis caurina ), Oecologia 75: 601–607.Google Scholar
  34. Lande, R., 1988b, Genetics and demography in biological conservation, Science 241: 1455–1460.PubMedCrossRefGoogle Scholar
  35. Lande, R., and Orzack, S. H., 1988, Extinction dynamics of age-structured populations in a fluctuating environment, Proc. Natl. Acad. Sci. U. S. A. 85: 7418–7421.Google Scholar
  36. Leslie, P. H., 1945, On the uses of matrices in certain population mathematics, Biometrika 33: 183–212.PubMedCrossRefGoogle Scholar
  37. Leslie, P. H., 1948, Some further notes on the use of matrices in population mathematics, Biometrika 35: 213–245.Google Scholar
  38. Leslie, P. H., 1966, The intrinsic rate of increase and the overlap of successive generations in a populations of guillemots ( Uria aalge Pont. ), J. Anim. Ecol. 35: 291–301.CrossRefGoogle Scholar
  39. McDonald, D. B., 1993, Demographic consequences of sexual selection in the long-tailed manakin, Behav. Ecol. (in press).Google Scholar
  40. Mertz, D. B., 1971, The mathematical demography of the California Condor population, Am. Nat. 105: 437–453.Google Scholar
  41. Meyer, J. S., Ingersoll, C. G., McDonald, L. L., and Boyce, M. S., 1986, Estimating uncertainty in population growth rates: jackknife vs. bootstrap techniques, Ecology 67: 1156–1166.CrossRefGoogle Scholar
  42. Nichols, J. D., Hensler, G. L., and Sykes, P. W., Jr., 1980, Demography of the Everglades Kite: implications for population management, Ecol. Modell. 9: 215–232.Google Scholar
  43. North, P. M., 1985, A computer modelling study of the population dynamics of the Screech Owl ( Otus asio ), Ecol. Modell. 30: 105–143.CrossRefGoogle Scholar
  44. Pennycuick, C., 1969, A computer model of the Oxford Great Tit population, J. Theor. Biol. 22: 381–400.PubMedCrossRefGoogle Scholar
  45. Pollock, K. H., Nichols, J. D., Brownie, C., and Hines, J. E., 1990, Statistical inference for capture-recapture experiments, Wildl. Monogr. 107: 1–97.Google Scholar
  46. Ricklefs, R. E., 1973, Fecundity, mortality, and avian demography, in: Breeding Biology of Birds ( D. S. Farner, ed.), Natl. Acad. Sei., Wash. D. C., pp. 366–435.Google Scholar
  47. Ricklefs, R. E., 1983, Comparative avian demography, in: Current Ornithology, Vol. 1 ( R. F. Johnson, ed.), Plenum Press, New York, pp. 1–32.Google Scholar
  48. Ryan, M. J., Fox, J. H., Wilczynski, W., and Rand, A. S., 1990, Sexual selection for sensory exploitation in the frog Physalaemus pustulosus, Nature 343: 66–67.PubMedCrossRefGoogle Scholar
  49. Simons, T., 1984, A population model of the endangered Hawaiian Dark-rumped Petrel, J. Wildl. Manage. 48: 1065–1076.Google Scholar
  50. Hiljapurkar, S., 1990, Population Dynamics in Variable Environments, Springer-Verlag, New York.Google Scholar
  51. van Groenendael, J., de Kroon, H., and Caswell, H., 1988, Projection matrices in population biology, Trends Ecol. Evol. 3: 264–269.Google Scholar
  52. Williams, G. C., 1966, Natural selection, the costs of reproduction, and a refinement of Lack’s principle, Am. Nat. 100: 687–690.CrossRefGoogle Scholar
  53. Woolfenden, G. E., and Fitzpatrick, J. W., 1984, The Florida Scrub fay: Demography of a Cooperative-Breeding Bird, Monogr. Pop. Biol. 20, Princeton University Press, Princeton, NJ.Google Scholar

Copyright information

© Plenum Press, New York 1993

Authors and Affiliations

  • David B. McDonald
    • 1
  • Hal Caswell
    • 2
  1. 1.Archbold Biological StationLake PlacidUSA
  2. 2.Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations