Advertisement

Neglected Niches

The Microbial Ecology of the Gastrointestinal Tract
  • Adrian Lee
Part of the Advances in Microbial Ecology book series (AMIE, volume 8)

Abstract

Every day we excrete 100–200 g of feces. Given that 75% of the wet weight is composed of bacteria (Stephen and Cummings, 1980) and that each gram contains 1 × 1011 organisms belonging to up to 400 different species (Moore and Holdeman, 1974), it is clear that we are the outer casing of possibly one of the most highly evolved and complex microbial ecosystems of them all. Freter et al (1983a) have commented on the apparent paradox that 100 years of intensive research has not brought us close to an understanding of what controls the indigenous microbiota* of the gastrointestinal tract. This lack of progress does not seem so surprising if we consider the intestine as a continuous culture vessel containing at the one time hundreds of organisms in steady state conditions. The study of even two or three organisms in steady state in a culture vessel is difficult enough. And yet, here the culture vessel of the gut compounds the problem by being composed of living animal cells.

Keywords

Volatile Fatty Acid Facultative Anaerobe Colonization Resistance Normal Microbiota Continuous Culture System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, M., 1971, Microbial Ecology, Wiley, New York.Google Scholar
  2. Ament, M. E., Ochs, H. D., and Davis, S. D., 1973, Structure and function of the gastrointestinal tract in primary immunodeficiency syndromes. A study of 39 patients, Medicine 52:227–248.PubMedGoogle Scholar
  3. Andremont, A., Raibaud, P., Tancrede, C., Duval-Iflah, Y. and Ducluzeau, R., 1983, The use of germ-free mice associated with human fecal flora as an animal model to study enteric bacterial interactions, in: Recent Advances in Bacterial Diarrheal Diseases: An International Symposium, K. T. K. Scientific Publishers, Tokyo.Google Scholar
  4. Aries, v. C., Crowther, J. S., Draser, B. S., Hill, M. J., and Ellis, F. R. 1971, The effect of a strict vegetarian diet on the faecal flora and faecal steroid concentrations, J. Pathol. 103:54–56.PubMedGoogle Scholar
  5. Amon, S. S., Damus, K., Thompson, B., Midura, T. F. and Chin, J., 1982, Protective role of human milk against sudden death from infant botulism, J. Pediatr. 100:568–573.Google Scholar
  6. Atlas, R. M., 1984, Diversity of microbial communities, in: Advances in Microbial Ecology, Vol. 7 (K. C. Marshall, ed.), pp. 1–47, Plenum Press, New York.Google Scholar
  7. Bartlett, J. G., 1982, Virulence factors of anaerobic bacteria, Johns Hopkins Med. J. 151:1–9.PubMedGoogle Scholar
  8. Berg, R. D., 1980, Mechanisms confining indigenous bacteria to the gastrointestinal tract, Am. J. Clin. Nutr. 33:2472–2484.PubMedGoogle Scholar
  9. Berg, R. D., and Savage, D. C., 1972, Immunological responses and microorganisms indigenous to the gastrointestinal tract, Am. J. Clin. Nutr. 25:1364–1371.PubMedGoogle Scholar
  10. Berg, R. D., and Savage, D. C., 1975, Immune responses of specific pathogen-free and gnotobiotic mice to antigens of indigenous and non-indigenous microorganisms, Infect. Immunol. 11:320–329.Google Scholar
  11. Bergheim, O., Hansjen, A. H., Pincussen, L., and Weiss, E., 1941, Relation of volatile fatty acids and hydrogen sulphide to the intestinal flora, J. Infect. Dis. 69:155–166.Google Scholar
  12. Blaser, M. J., Parsons, R. B., and Wang, W.-L., 1980, Acute colitis caused by Campylobacter fetus ss. jejuni. Gastroenterology 78:448–453.Google Scholar
  13. Bohnoff, M., Miller, C. P., and Martin, W. R., 1964, Resistance of the mouse’s intestinal tract to experimentalSalmonella infection. II. Factors responsible for its loss following streptomycin treatment, J. Exp. Med. 120:817–824.Google Scholar
  14. Bowden, G. H. W., Ellwood, D. C., and Hamilton, I. R., 1979, Microbial ecology of the oral cavity, in: Advances in Microbial Ecology, Vol. 3 (M. Alexander, ed.), pp. 135–217, Plenum Press, New York.Google Scholar
  15. Brock, T. D., 1966, Principles of Microbial Ecology, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  16. Brockett, M., and Tannock, G. W., 1982, Dietary influence on microbial activities in the caecum of mice, Can. J. Microbiol. 28:493–499.PubMedGoogle Scholar
  17. Brownlie, L. E., and Grau, F. H., 1967, Effect of food intake on growth and survival of salmonellas and Escherichia coli in the bovine rumen, J. Gen. Microbiol. 46:125–134.PubMedGoogle Scholar
  18. Bullen, C. L., and Tearle, P. V., 1976, Bifidobacteria in the intestinal tract of infants: Anin vitro study, J. Med. Microbiol 9:335–344.PubMedGoogle Scholar
  19. Bullen, J. M., Rogers, H. J., and Leigh, L., 1972, Iron-binding proteins in milk and resistance to Escherichia coli infection in infants, Br. Med. J. 1:69–75.PubMedPubMedCentralGoogle Scholar
  20. Burek, J. D., 1978, Pathology of Aging Rats, CRC Press, Boca Raton, Florida.Google Scholar
  21. Candy, D. C. A., 1980, Adhesion of bacteria to mucosal surfaces—An area of increasing importance in diarrhoeal disease, Eur. J. Pediatr. 134:3–8.PubMedGoogle Scholar
  22. Chase, D. G., and Erlandsen, S. L., 1976, Evidence for a complex life cycle and endospore formation, in attached, filamentous, segmented bacterium from murine ileum, J. Bacterial 127:572–583.Google Scholar
  23. Christie, R. J., Williams, F. P., Whitney, Jr., R. A., and Johnson, D. J., 1968, Techniques used in the establishment and maintenance of a barrier mouse breeding colony, Lab. Anirn. Care 18:543–549.Google Scholar
  24. Cinco, M., Banfi, E., and Crotti, D., 1983, Studies on the adhesive properties of Campylobacters, in: Campylobacter II (A. D. Pearson, M. B. Skirrow, B. Rowe, J. R. Davies, and D. M. Jones, eds.), p. 112, PHLS, London.Google Scholar
  25. Cisneros, R. L., Onderdonk, A. B., Bronson, R., and Shegal, R., 1981, Association of inflammatory bowel disease in a colony of cotton-top marmosets with the presence of Campylobacter fetus subsp. jejuni, in: Abstracts of the Annual Meeting of the American Society for Microbiology 81, p. 24 (abstract).Google Scholar
  26. Coates, M. E., and Fuller, R., 1977, The gnotobiotic animal in the study of gut microbiology, in: Microbial Ecology of the Gut (R. T. J. Clarke and T. Bauchop, eds.), pp. 311–346, Academic Press, London.Google Scholar
  27. Colgan, T., Lambert, J. R., Newman, A., and Luk, S. C., 1980, Campylobacter jejuni enterocolitis. A clinicopathologic study. Arch. Pathol Lab. Med. 104:571–574.PubMedGoogle Scholar
  28. Costerton, J. W., Irvin, R. T., and Cheng, K. J., 1981, The role of bacterial surface structures in pathogenesis, CRC Crit. Rev. Microbiol 8:303–338.Google Scholar
  29. Cummings, J. H., 1981, Short chain fatty acids in the human colon. Gut 22:763–779.PubMedPubMedCentralGoogle Scholar
  30. Damian, R. T., 1964, Molecular mimicry: Antigen sharing by parasite and host and its consequences, Am. Nat. XCVIII:129–149.Google Scholar
  31. Dubos, R., 1965, Man Adapting, Yale University Press, New Haven.Google Scholar
  32. Dubos, R., and Schaedler, R., 1964, The digestive tract as an ecosystem, Am. J. Med. Sci. 248:267–272.PubMedGoogle Scholar
  33. Dubos, R., Schaedler, R. W., Costello, R., and Hoet, P., 1965, Indigenous, normal and autochthonous flora of the gastrointestinal tract, J. Exp. Med. 122:67–76.PubMedPubMedCentralGoogle Scholar
  34. Duffy, M. C., Benson, J. B., and Rubon, S. J., 1980, Mucosal invasion in Campylobacter enteritis. Am. J. Clin. Pathol 73:706–708.PubMedGoogle Scholar
  35. Evans, D. G., Evans, D. J., Tjoa, W. S., and Dupont, H. L., 1978, Detection and characterization of colonization factor of enterotoxigenic Escherichia coli isolated from adults with diarrhea. Infect. Immunol 19:727–736.Google Scholar
  36. Field, L. H., Underwood, J. L., Pope, L. M., and Berry, L. J., 1981, Intestinal colonization of neonatal animals by Campylobacter fetus subsp. jejuni, Infect. Immunol 33:884–892.Google Scholar
  37. Finegold, S. M., Atteberg, H. R., and Sutter, V. L. 1974, Effect of diet on human fecal flora: Comparison of Japanese and American diets, Am. J. Clin. Nutr. 27:1456–1469.PubMedGoogle Scholar
  38. Foo, M. C., and Lee, A., 1972, Immunological response of mice to members of the autochthonous intestinal microflora. Infect. Immunol 6:525–532.Google Scholar
  39. Foo, M. C., and Lee, A., 1974, Antigenic cross-reaction between mouse intestine and a member of the autochthonous microflora, Infect. Immunol. 9:1066–1069.Google Scholar
  40. Foo, M. C., Lee, A., and Cooper, G. N., 1974, Natural antibodies and the intestinal flora of rodents, Aust. J. Exp. Biol. Med. Sci. 52:321–330.PubMedGoogle Scholar
  41. France, G. L., Manner, D. J., and Steele, R. W., 1980, Breast feeding and Salmonella infection, Am. J. Dis. Child 134:147–152.PubMedGoogle Scholar
  42. Freter, R., and Abrams, G. D., 1972, Function of various intestinal bacteria in converting germfree mice to the normal state, Infect. Immunol. 6:119–126.Google Scholar
  43. Freter, R., and O’Brien, P. C. M., 1981, Role of chemotaxis in the association of motile bacteria with intestinal mucosa: Fitness and virulence of nonchemotactic Vibrio cholerae mutants in infant mice, Infect. Immunol. 34:222–233.Google Scholar
  44. Freter, R., Allweiss, B., O’Brien, P. C. M., Halstead, S. A., and Macsai, M. S., 1981, Role of chemotaxis in the association of motile bacteria with intestinal mucosa: In vitro studies. Infect. Immunol. 34:241–249.Google Scholar
  45. Freter, R., Stauffer, E., Cleven, D., Holdeman, L. V., and Moore, E. C., 1983a, Continuous- flow cultures as in vitro models of the ecology of large intestinal flora, Infect. Immunol. 39:666–675.Google Scholar
  46. Freter, R., Brickner, H., Botney, M., Cleven, D., and Aranki, A., 1983b, Mechanisms that control bacterial populations in continuous flow culture models of mouse large intestinal flora. Infect. Immunol. 39:676–685.Google Scholar
  47. Freter, R., Brickner, H., Fekete, J., Vickerman, M. M., and Carey, K. E., 1983c, Survival and implantation ofEscherichia coli in the intestinal tract. Infect. Immunol. 39:686–703.Google Scholar
  48. Garland, C. D., Lee, A., and Dickson, M. R., 1979, The preservation of surface-associated microorganisms prepared for scanning electron microscopy, J. Microsc. 116:227–242.PubMedGoogle Scholar
  49. Garland, C. D., Lee, A., and Dickson, M. R., 1982, Segmented filamentous bacteria in the rodent small intestine: Their colonization of growing animals and possible role in host resistance to Salmonella, Microb. Ecol. 8:181–190.Google Scholar
  50. Gorbach, S. L., 1982, The intestinal microflora and its colon cancer connection. Infection 10:379–384.PubMedGoogle Scholar
  51. Gordon, H. A., and Pesti, L., 1971, The gnotobiotic animal as a tool in the study of host microbial relationships, Bacteriol. Rev. 35:390–429.PubMedPubMedCentralGoogle Scholar
  52. Gordon, J. E., 1971, Diarrheal disease of early childhood—World wide scope of the problem, Ann. N.Y. Acad Sci. 176:9–15.Google Scholar
  53. Grau, F. H., Brownlie, L. E., and Smith, M. G., 1969, Effects of food intake on number of salmonellae and Escherichia coli in rumen and faeces of sheep, J. Appl. Bacteriol. 32:112–117.PubMedGoogle Scholar
  54. Guiot, H. F. L., 1982, Role of competition for substrate in bacterial antagonism in the gut. Infect. Immunol. 38:887–892.Google Scholar
  55. Harris, D. L., and Kinyon, J. M., 1974, Significance of anaerobic spirochetes in the intestines of animals. Am. J. Clin. Nutr. 27:1297–1304.PubMedGoogle Scholar
  56. Hector, R. F., and Domer, J. E., 1982, Mammary gland contamination as a means of establishing long-term gastrointestinal colonization of infant mice with Candida albicans, Infect. Immunol. 38:788–790.Google Scholar
  57. Heine, W., and Thunert, A., 1968, The establishment of a division of gnotobiology and conceptions of special barrier type animal houses, in: Advances in Germfree Research and Gnotobiology (M. Miyakawa and T. D. Luckey, eds.), pp. 9–15, Iliffe Books, London.Google Scholar
  58. Hobson, P. N., and Wallace, R. J., 1982a, Microbial ecology and activities in the rumen: Part I, CRC Crit. Rev. Microbiol. 9:165–225.Google Scholar
  59. Hobson, P. N., and Wallace, R. J., 1982b, Microbial ecology and activities in the rumen: Part II, CRC Crit. Rev. Microbiol. 9:253–320.Google Scholar
  60. Holdeman, L. V., Good, I. J., and Moore, W. E. C., 1976, Human fecal flora: Variation in bacterial composition within individuals and a possible effect of emotional stress, Appl. Environ. Microbiol. 31:359–375.PubMedPubMedCentralGoogle Scholar
  61. Hoskins, L. C., and Boulding, E. T., 1981, Mucin degradation in human colon ecosystems. Evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes, J. Clin. Invest. 67:163–172.PubMedPubMedCentralGoogle Scholar
  62. Hungate, R. E., 1978, Gut microbiology, in: Microbial Ecology (M. W. Loutit and J. A. R. Miles, eds.), pp. 258–264, Springer-Verlag, Berlin.Google Scholar
  63. Impey, C. S., Mead, G. C., and George, S. M., 1982, Competitive exclusion of salmonellas from the chick caecum using a defined mixture of bacterial isolates from the caecal microflora of an adult bird, Hyg Camb. 89:479–490.Google Scholar
  64. Jones, G. W., and Isaacson, R. E., 1983, Proteinaceous bacterial adhesis and their receptors, CRC Crit. Rex. Microbiol. 10:229–260.Google Scholar
  65. Kanaaneh, H., 1972, The relationship of bottle feeding to malnutrition and gastroenteritis in a pre-industrial setting. J. Trop. Pediatr. 18:302–306.Google Scholar
  66. Keighley, M. R. B., Taylor, E. W., Hares, M. M., Arabi, Y., Youngs, D., Bentley, S., and Burdon, D. W., 1981, Influence of oral mannitol bowel preparation on colonic microflora and the risk of explosion during endoscopic diathermy, Br. J. Surg. 68:554–556.PubMedGoogle Scholar
  67. Lamanna, C., 1972, Needs for illuminating the microbiology of the lumen. Am. J. Clin. Nutr. 25:1488–1494.PubMedGoogle Scholar
  68. Lawrence, G., Bates, J., and Gaul, A., 1982, Pathogenesis of neonatal necrotising enterocolitis, Lancet 1:137–139.PubMedGoogle Scholar
  69. Leach, W. D., Lee, A., and Stubbs, R. P., 1973, Localization of bacteria in the gastrointestinal tract: A possible explanation of intestinal spirochaetosis. Infect. Immunol. 7:961–972.Google Scholar
  70. Lee, A., 1980, Normal flora of animal intestinal surfaces, in: Adsorption of Microorganisms to Surfaces (G. Bitton and K. C. Marshall, eds.), pp. 145–173, Wiley, New York.Google Scholar
  71. Lee, A., 1984, The formalinized rat: A convenient microbial ecosystem, Am. J. Biol. Teach. 46:48–52.Google Scholar
  72. Lee, A., and Gemmell, E., 1972, Changes in the mouse intestinal microflora during weaning: Role of volatile fatty acids, Infect. Immunol. 5:1–7.Google Scholar
  73. Lee, A., Gordon, J., and Dubos, R., 1968, Enumeration of the oxygen sensitive bacteria usually present in the intestine of healthy mice, Nature 220:1137–1139.PubMedGoogle Scholar
  74. Lee, A., Gordon, J., Lee, C. J., and Dubos, R., 1971, The mouse intestinal flora with emphasis on the strict anaerobes, Exp. Med. 133:339–352.Google Scholar
  75. Lee, A., O’Rourke, J., Phillips, M. W., and Barrington, P., 1983, Campylobacter jejuni as a mucosa-associated organism: An ecological study, in: Campylobacter II (K. D. Pearson, M. B. Skirrow, B. Rowe, J. R. Davies, and D. M. Jones, eds.), pp. 112–114, PHLS, London.Google Scholar
  76. Lipson, A., 1976, Infecting dose of Salmonella, Lancet 1:969.Google Scholar
  77. Macartney, L., Mandlish, I. A. P., Al-Mashat, R. R., and Taylor, D. J., 1982, Natural and experimental enteric infections with Campylobacter jejuni in dogs, in: Campylobacter Epidemiology, Pathogenesis and Biochemistry (D. G. Newell, ed.), p. 172, MTP Press, Lancaster, England.Google Scholar
  78. Macfie, J. W. S., 1916, The morphology of certain spirochetes of man and other animals, Ann. Trop. Med Parasitol. 10:305–343.Google Scholar
  79. Macy, J. M., and Probst, L, 1979, The biology of gastrointestinal Bacteroides, Annu. Rev. Microbiol. 33:561–594.Google Scholar
  80. Mendrick, M. W., Geddes, A. M., and Gearty, J., 1982, Campylobacter enteritis: A study of clinical features and rectal mucosal changes, Scand. J. Infect. Dis. 14:35–38.PubMedGoogle Scholar
  81. McNabb, P. C., and Tomasi, T. B., 1981, Host defense mechanisms at mucosal surfaces, Annu. Rev. Microbiol. 35:477–496.PubMedGoogle Scholar
  82. Merrell, B. R., Walker, R. L, and Coolbaugh, J. C., 1981, Campylobacter fetus ss jejuni, a newly recognised enteric pathogen: Morphology and intestinal colonization, Scanning Electron Microsc. 4:125–131.Google Scholar
  83. Metchnikoff, E., 1908, The Prolongation of Life; Optimistic Studies, G. P. Putnam’s and Sons, London.Google Scholar
  84. Miller, R. S., and Hoskins, L. C., 1981, Mucin degradation in human colon ecosystems. Fecal population densities of mucin-degrading bacteria estimated by a ‘most probable number’ method. Gastroenterology 81:759–765.PubMedGoogle Scholar
  85. Mims, C. A., 1982, The Pathogenesis of Infectious Disease, Academic Press, London.Google Scholar
  86. Moore, W. E. C., and Holdeman, L. V., 1974, Human fecal flora: The normal flora of 20 Japanese-Hawaiians, Appl. Microbiol. 27:961–979.PubMedPubMedCentralGoogle Scholar
  87. Naess, V., Johannessen, A. C., and Hofstad, T., 1983, Adherence of Campylobacter jejuni to porcine brushborders, in: Campylobacter II (A. D. Pearson, M. B. Skirrow, B. Rowe, J. R. Davies, and D. M. Jones, eds.), pp. 111–112, PHLS, London.Google Scholar
  88. Nurmi, E., and Rantalaa, M., 1973, New aspects of Salmonella infection in broiler production, Nature 241:210–211.PubMedGoogle Scholar
  89. Perrot, A., 1976, Evolution of the digestive microflora in a unit of specified pathogen-free mice: Efficiency of the barrier, Lab. Anim. 10:143–156.PubMedGoogle Scholar
  90. Pesti, L., Kokas, E., and Gordon, H. A., 1969, Effects of Clostridium difficile, Lactobacillus casei. Bacillus subtilis, and Lactobacillus sp. as mono- and di-contaminants on the caecum of germfree mice, in: Germfree biology (E. A. Mirand and N. Back, eds.), pp. 179–180, Plenum Press, New York.Google Scholar
  91. Phillips, M. W., and Lee, A., 1983, Isolation and characterization of a spiral bacterium from the crypts of rodent gastrointestinal tracts, Appl. Environ. Microbiol. 45:675–683.PubMedPubMedCentralGoogle Scholar
  92. Phillips, M. W., and Lee, A., 1984, Microbial colonization of rat colonic mucosa following intestinal perturbation, Microb. Ecol 10:79–88.PubMedGoogle Scholar
  93. Phillips, M., Lee, A., and Leach, W. D., 1978, The mucosa-associated microflora of the rat intestine: A study of normal distribution and magnesium sulphate induced diarrhoea, Aust. J. Exp. Biol. Med Sci. 56:649–662.PubMedGoogle Scholar
  94. Porter, P., Parry, S. H., and Allen, W. D., 1977, Significance of immune mechanisms in relation to enteric infections of the gastrointestinal tract in animals, Ciba Found. Symp. 46:55–75.PubMedGoogle Scholar
  95. Prescott, J. F., Barker, I. K., Manninen, K. I., and Miniats, O. P., 1981, Campylobacter jejuni enteritis studies in gnotobiotic dogs. Can. J. Comp. Med. 45:377–383.PubMedPubMedCentralGoogle Scholar
  96. Prescott, J. F., Manninen, K. I., and Barker, I. K., 1982, Experimental pathogenesis of Campylobacter jejuni enteritis studies in gnotobiotic dogs, pigs, and chickens, in: Campylobacter Epidemiology, Pathogenesis, and Biochemistry (D. G. Newell, ed.), pp. 170–171, MTP Press, Lancaster, England.Google Scholar
  97. Prins, R. A., 1977, Biochemical activities of gut micro-organisms, in: Microbial Ecology of the Gut (R. T. J. Clarke and T. Bauchop, eds.), pp. 74–183, Academic Press, London.Google Scholar
  98. Prizont, R., and Königsberg, N., 1981, Identification of bacterial glycosidases in rat cecal contents. Digest. Dis. Sci. 26:773–777.PubMedGoogle Scholar
  99. Raibaud, P., Ducluzeau, R., Dubos, F., Hudauh, S., Bewa, H., and Muller, M. C., 1980, Implantation of bacteria from the digestive tract of man and various animals into gnotobiotic mice. Am. J. Clin. Nutr. 33:2440–2447.PubMedGoogle Scholar
  100. Ramphal, R., Small, P. M., Shands, J. W., Fischlschweiger, W., and Small, P. A., 1980, Adherence of Pseudomonas aeruginosa to tracheal cells injured by influenza infection or by endotracheal intubation. Infect. Immunol. 27:614–619.Google Scholar
  101. Rantala, M., and Nurmi, E., 1973, Prevention of the growth of Salmonella infantis in chicks by the flora of the alimentary tract of chickens, Br. Poult. Sci. 14:627–630.PubMedGoogle Scholar
  102. Rasic, J. L., and Kurman, J. A., 1983, Bifidobacteria and Their Role, Brikhauser, Basel.Google Scholar
  103. Reddy, B. S., Weisburger, J. H., and Wynder, E. L., 1975, Effect on high risk and low risk diets for colon carcinogenesis on fecal microflora and steroids in man, J, Nutr. 105:878–884.Google Scholar
  104. Roediger, W. E. W., 1980, Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21:793–798.PubMedPubMedCentralGoogle Scholar
  105. Rosenthal, S. L., 1969, Exacerbation of Salmonella enteritis due to ampicillin, N. Engl. J. Med. 280:147–148.PubMedGoogle Scholar
  106. Rothbaum, R., Mdams, A. J., Giannella, R., and Partin, J. C., 1982, A clinicopathologic study of enterocyte-adherent Escherichia coli: A cause of protracted diarrhea in infants. Gastroenterology 83:441–454.PubMedGoogle Scholar
  107. Rozee, K. R., Cooper, P., Lam, K., and Costerton, J. W., 1982, Microbial flora of the mouse ileum mucous layer and epithelial surface, Appl. Environ. Microbiol 43:1451–1463.PubMedPubMedCentralGoogle Scholar
  108. Sakata, T., and Englehardt, W. V., 1981, Lumenal mucin in the large intestine of mice, rats and guinea pigs, Cell. Tiss. Res. 219:629–635.Google Scholar
  109. Sasaki, S., Onishi, N., Nishikawa, T., Suzuki, R., Maeda, R., Takahashi, T., Usuda, M., Nomura, T., and Saito, M., 1970, Monoassociation with bacteria in the intestines of germfree mice, Keio J. Med. 19:87–101.PubMedGoogle Scholar
  110. Savage, D. C., 1977a, Microbial ecology of the gastrointestinal tract, Annu. Rev. Microbiol. 31:107–133.PubMedGoogle Scholar
  111. Savage, D. C., 1977b, Interactions between the host and its microbes, in: Microbial Ecology of the Gut (R. T. J. Clarke and T. Bauchop, eds.) pp. 277–310, Academic Press, London.Google Scholar
  112. Savage, D. C., 1980, Colonisation by and survival of pathogenic bacteria on intestinal mucosal surfaces, in: Adsorption of Microorganisms to Surfaces (G. Bitton and K. C. Marshall, eds.), pp. 176–206, Wiley, New York.Google Scholar
  113. Savage, D. C., 1982, Association of pathogenic bacteria with mucosal surfaces in humans, Clin. Microbiol. News 4:105–108.Google Scholar
  114. Savage, D. C., Dubos, R., and Schaedler, R. W., 1968, The gastrointestinal epithelium and its autochthonous bacterial flora, J. Exp. Med. 128:97–110.PubMedPubMedCentralGoogle Scholar
  115. Schaedler, R. W., and Dubos, R. J., 1962, The fecal flora of various strains of mice. Its bearing on their susceptibility to endotoxin, J. Exp. Med. 115:1149–1159.PubMedPubMedCentralGoogle Scholar
  116. Schaedler, R. W., Dubos, R., and Costello, R., 1965, The development of the bacterial flora in the gastrointestinal tract of mice, J. Exp. Med. 122:59–66.PubMedPubMedCentralGoogle Scholar
  117. Sellwood, R., Gibbons, R. A., Jones, G. W., and Rutter, J. M., 1975, Adhesion of entero- pathogenicEscherichia coli to pig intestinal brush-borders: The existence of two pig phenotypes, J. Med. Microbiol. 8:405–411.PubMedGoogle Scholar
  118. Shahani, K. M., and Ayebo, A. D., 1980, Role of dietary lactobacilli in gastrointestinal microecology. Am. J. Clin. Nutr. 33:2448–2457.PubMedGoogle Scholar
  119. Shedlofsky, S., and Freter, R., 1974, Synergism between ecologic and immunologic control mechanisms of intestinal flora, J. Inf Dis. 129:296–303.Google Scholar
  120. Shipley, P. L., Gyles, C. L., and Falkow, S., 1978, Characterization of plasmids that encode for the K88 colonization antigen, Infect. Immunol. 20:559–566.Google Scholar
  121. Sleijfer, D. T., Mulder, N. H., de Vries-Hospers, H. G., Fidler, V., Nieweg, H. O., van der Waaij, D., and van Saene, H. K. F., 1980, Infection prevention in granulocytopenic patients by selective decontamination of the digestive tract, Eur. J Cancer 16:859–869.PubMedGoogle Scholar
  122. Smith, D. T., 1952, The disturbance of the normal bacterial ecology by the administration of antibiotics with the development of new clinical syndromes, Ann. Int. Med. 37:1135–1143.PubMedGoogle Scholar
  123. Smith, H. W., 1965, The development of the flora of the alimentary tract in young animals, J. Pathol. Bacteriol. 90:495–513.PubMedGoogle Scholar
  124. Stark, P. L., 1983, The microbial ecology of the large bowel of breast and formula-fed infants during the first year of life, Ph.D. thesis, University of New South Wales, Sydney.Google Scholar
  125. Stark, P. L., and Lee, A., 1982a, The bacterial colonization of the large bowel of pre-term low birth weight neonates, J. Hyg. Camb. 89:59–67.PubMedPubMedCentralGoogle Scholar
  126. Stark, P. L., and Lee, A., 1982b, The microbial ecology of the large bowel of breast fed and formula fed infants during the first year of life, J. Med. Microbiol. 15:189–203.PubMedGoogle Scholar
  127. Stark, P. L., Lee, A., and Parsonage, B. D., 1982, Colonization of the large bowel by Clostridium difficile in healthy infants: Quantitative study, Infect. Immunol. 35:895–899.Google Scholar
  128. Stephen, A., and Cummings, J. H., 1980, The microbial contribution to human faecal mass, J. Med Microbiol. 13:45–56.PubMedGoogle Scholar
  129. Suegara, N., Morotomi, M., Watanabe, T., Kawai, Y., and Matai, M., 1975, Behaviour of microflora in the rat stomach: Adhesion of lactobacilli to the keratinized epithelial cells of the rat stomach in vitro. Infect. Immunol. 12:173–179.Google Scholar
  130. Tabaqchali, S., 1979, Abnormal intestinal flora, Ann. 1st. Super. Sanita 15:29–42.Google Scholar
  131. Takeuchi, A., Jervis, H. R., Nakagawa, H., and Robinson, D. M., 1974, Spiral-shaped organisms on the surface colonic epithelium of the monkey and man. Am. J. Clin. Nutr. 27:1287–1296.PubMedGoogle Scholar
  132. Tannock, G. W., and Savage, D. C., 1974, Influence of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect. Immunol. 9:591–598.Google Scholar
  133. Taylor, J., and Mccoy, J. H., 1969, Salrrionella and Arizona infections, in: Food-Borne Infections and Intoxications (H. Riemann, ed.), pp. 3–72, Academic Press, New York.Google Scholar
  134. Van der Waaij, D., and Heidt, P. J., 1977, Intestinal bacterial ecology in relation to immunological factors and other defense mechanisms, in: Food and Immunology (L. Hambraens, C. A. Hanson, and H. Marlane, eds.), pp. 133–141, Almquist and Wiksell, Stockholm.Google Scholar
  135. Van der Waaij, D., Berghuis-de Vries, J. M., and Lekkerkerk-van der Wees, J. E. C, 1971, Colonization resistance of the digestive tract in conventional and antibiotic-treated mice, J. Hyg 69:405–413.PubMedPubMedCentralGoogle Scholar
  136. Van der Waaij, D., Aberson, J., Thijm, H. A., and Welling, G. W., 1982, The screening of four aminoglycosides in the selective decontamination of the digestive tract in mice. Infection 10:35–40.PubMedGoogle Scholar
  137. Viscidi, R., Willey, S., and Bartlett, J. G., 1981, Isolation rates and toxigenic potential of Clostridium difficile isolates from various patient populations. Gastroenterology 81:5–9.PubMedGoogle Scholar
  138. Yoon, H., Klinzing, G., and Blanch, H. W., 1977, Competition for mixed substrates by microbial populations, Biotechnol. Bioeng. 19:1193–1210.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Adrian Lee
    • 1
  1. 1.School of MicrobiologyUniversity of New South WalesKensingtonAustralia

Personalised recommendations