Advertisement

Characterization of Viral Proteins Synthesized in 229E Infected Cells and Effect(s) of Inhibition of Glycosylation and Glycoprotein Transport

  • M. C. Kemp
  • J. C. Hierholzer
  • A. Harrison
  • J. S. Burks
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 173)

Abstract

Coronaviruses were classified as a distinct group of viruses in 1968 (1) and four members of this group are recognized as human respiratory pathogens: These include B814 (2), the first human coronavirus (HCV) isolated 229E (3), OC-43 (4) and 692 (5), identified by immunoelectromicroscopy only. In addition to the respiratory pathogens, two coronaviruses have been isolated while working with brain tissue from multiple sclerosis patients (6). These viruses cross-react antigenically with OC-43 but neither of these viruses have been implicated in respiratory disease.

Keywords

Multiple Sclerosis Patient 229E Protein Infectious Bronchitis Virus Virus Glycoprotein Avian Infectious Bronchitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.A.J. Tyrrell, J.D. Almeida, D.M. Berry, CH. Cunningham, D. Hamre, M.S. Hofstad, L. Mallucci, and K. McIntosh, Coronaviruses, Nature 220:650(1971).Google Scholar
  2. 2.
    D.A.J. Tyrrell and M.L. Bynoe, Cultivation of a Novel Type of Common-Cold Virus in Organ Cultures, Brit. Med. J. 1:1467(1965).PubMedCrossRefGoogle Scholar
  3. 3.
    D. Hamre and J.T. Procknow, A. New Virus Isolated from the Human Respiratory Tract, Proc. Soc. Exp. Biol. Med. 121:190(1966).PubMedGoogle Scholar
  4. 4.
    K. McIntosh, J.H. Dees, W.B. Becker, A.Z. Kapikian, and R.M. Chanock, Recovery in Tracheal Organ Cultures of Novel Viruses from Patients with Respiratory Disease, Proc. Natl. Acad Sci. U.S.A. 57:933(1967).PubMedCrossRefGoogle Scholar
  5. 5.
    A.Z. Kapikian, H.D. James, S.J. Kelly, and A.L. Vaughn, Detection of Coronavirus Strain 692 by Immune Electron Microscopy, Immun. 7:11(1973).Google Scholar
  6. 6.
    J.S. Burks, B.L. DeVald, L.D. Jankovsky, and J.C. Gerdes, Two Coronaviruses Isolated from Central Nervous System Tissue of Two Multiple Sclerosis Patients, Science 209:933(1980).PubMedCrossRefGoogle Scholar
  7. 7.
    L.J. Anderson, P.A. Patriarca, J.C. Hierholzer, and G.R. Noble, Viral Respiratory Illnesses, Med. Clinics, In Press.Google Scholar
  8. 8.
    M.R. Macnaughton, Structural and Antigenic Relationships Between Human, Murine and Avian Coronaviruses, Adv. Exp. Med. Biol. 142:19(1980).Google Scholar
  9. 9.
    G.A. Tannock, and J.C. Hierholzer, The RNA of Human Coronavirus OC-43, Virology 78:500(1977).PubMedCrossRefGoogle Scholar
  10. 10.
    S.R. Weiss, and J.L. Leibowitz, Comparison of the RNAs of Murine and Human Coronaviruses, Adv. Exp. Med. Biol. 142:245(1980).Google Scholar
  11. 11.
    J.C. Hierholzer, Purification and Biophysical Properties of Human Coronavirus 229E, Virology 75:155.(1976)PubMedCrossRefGoogle Scholar
  12. 12.
    K.V. Holmes, E.W. Doller, and L.S. Sturman, Tunicamycin Resistant Glycosylation of a Coronavirus Glycoprotein: Demonstration of a Novel Type of Viral Glycoprotein, Virology 115:334(1981).PubMedCrossRefGoogle Scholar
  13. 13.
    D.F. Stern, and B.M. Sefton, Coronavirus Proteins: Structure and Function of the Oligosaccharides of the Avian Infectious Bronchitis Virus Glycoproteins, J. Virol. 44:804(1982).PubMedGoogle Scholar
  14. 14.
    M.C. Kemp, M.L. Perdue, H.W. Rogers, D.J. O’Callaghan, and C.C. Randall, Structural Polypeptides of the Hamster Strain of Equine Herpes Virus Type 1: Products Associated with Purification. Virology 61:361(1974).PubMedCrossRefGoogle Scholar
  15. 15.
    L.S. Sturman, The Structure and Behavior of Coronavirus A59 Glycoproteins, Adv. Exp. Med. Biol. 142:1(1980).Google Scholar
  16. 16.
    N.G. Famulari, and K. Jalalian, Cell Surface Expression of the env gene polyprotein of dual tropic mink cell focus-forming murine leukemic virus, J. Virol. 30, 720(1979).PubMedGoogle Scholar
  17. 17.
    A.K. Takatsuki, K. Kohno, and G. Tamura, inhibition of biosynthesis of polyisoprenol sugars in chick embryo microsomes by tunicamycin, Agr. Biol. Chem. 39:2089(1975).CrossRefGoogle Scholar
  18. 18.
    D.K. Struck, and W.J. Lennarz, Evidence for the Participation of Saccharide-Lipids in the Synthesis of the Oligosaccharide Chain of Ovalbumin, J. Biol. Chem. 252:1007(1977).PubMedGoogle Scholar
  19. 19.
    A.M. Tartakoff, and P. Vaggali, Plasma Cell Immunoglobulin Secretion Arrest is accompained by Alterations of Golgi Complex, J. Exp. Med. 146:1332(1977).PubMedCrossRefGoogle Scholar
  20. 20.
    N.H. Uchida, H. Smilowitz, and M.L. Tanzer, Monovalent Ionophores Inhibit Secretion of Procollagon and Fibronectin from Cultured Fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 76:1868(1979).PubMedCrossRefGoogle Scholar
  21. 21.
    D.C. Johnson, and M.J. Schlesinger, Vesicular Stomatitis Virus and Sindbis Virus Glycoprotein Transport to the Cell Surface in Inhibited by Ionophores, Virology 103:407(1980).PubMedCrossRefGoogle Scholar
  22. 22.
    L.S. Sturman, Characterization of a Coronavirus. I. Structural Proteins: Effect of Preparative Conditions on the Migration of Protein in Polyacrylamide Gels, Virology 77:637(1977).PubMedCrossRefGoogle Scholar
  23. 23.
    L.S. Sturman, and K.V. Holmes, Characterization of a Coronavirus. II. Glycoproteins of the Viral Envelope; Tryptic Peptide Analysis, Virology 77:650(1977).PubMedCrossRefGoogle Scholar
  24. 24.
    H. Wege, Wege, K. Nagashima, and V. ter Meulen, Structural Polypeptides of the Murine Coronavirus JHM, J. Gen. Virol. 42:37(1979).PubMedCrossRefGoogle Scholar
  25. 25.
    S. Siddell, H. Wege, A. Barthel, and V. ter Meulen, Coronavirus JHM: Intracellular Protein Synthesis, J. Gen. Virol. 53:145(1981).PubMedCrossRefGoogle Scholar
  26. 26.
    H. Niemann, and H. D. Klenk, Coronavirus Glycoprotein El, A New Type of Viral Glycoprotein, J. Mol. Biol. 153:983(1981).CrossRefGoogle Scholar
  27. 27.
    B.C. Johnson, and P.G. Spear, O — Linked Oligosaccharides are Acquired by Herpes Simplex Virus Glycoproteins in the Golgi Apparatus, Cell 32:987(1983).PubMedCrossRefGoogle Scholar
  28. 28.
    H. D. Klenk, W. Hollert, R. Rott and C. Scholtissek, Association of Influenza Virus Proteins with Cytoplasmic Fractions, Virology, 57:28(1974).PubMedCrossRefGoogle Scholar
  29. 29.
    R. T. Schwartz, T.M. Rohrschneider, and M.F.G. Schmidt, Suppression of Glycoprotein Formation of Semliki Forest Virus, Influenza and Avian Sarcoma Virus by Tunicamycin, J. Virol. 17:782(1976).Google Scholar
  30. 30.
    K. Nakamura, and R.W. Compans, Effects of Inhibitors on Glycosylation, Sulfation, and Assembly of Influenza Virus glycoproteins. Virology 84:303(1978).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • M. C. Kemp
    • 1
    • 2
    • 3
  • J. C. Hierholzer
    • 4
  • A. Harrison
    • 4
  • J. S. Burks
    • 1
    • 2
    • 3
  1. 1.Center for Neurological DiseasesRocky Mountain Multiple Sclerosis CenterUSA
  2. 2.Veterans Administration Medical CenterUSA
  3. 3.University of Colorado School of MedicineDenverUSA
  4. 4.Division of Viral DiseasesCenters for Disease ControlAtlantaUSA

Personalised recommendations