Advertisement

Organization of the IBV Genome

  • David F. Stern
  • Bartholomew Sefton
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 173)

Abstract

We have investigated how the information contained within the large RNA genome of IBV is expressed. We began by examining the structure of IBV-specified RNAs. Infected chicken embryo kidney (CEK) cells contain at least 6 IBV RNA species. These consist of the viral genome, RNA F, with an estimated complexity of 23 kb1, and subgenomic RNAs A, B, C, D, and E, which range in size from 2.4 kb to 7.9 kb2. We have recently identified an additional IBV-specified RNA species, RNA M, by Northern blot analysis using a hybridization probe containing cloned IBV cDNA sequences (see below). RNA M is intermediate in size between RNAs B and C (Table 1). Structural analysis of RNAs A, B, C, D, E, and F by ribonuclease T1 fingerprinting revealed that they comprise a 3’ coterminal nested set3. Synthesis of 3’ coterminal RNAs is now known to be a characteristic feature of Coronavirus multiplication4,5.

Keywords

Tryptic Peptide Translation Product Nucleocapsid Protein Large Member Mouse Hepatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B. Lomniczi and I. Kennedy, J. Virol. 24:99–107 (1977).PubMedGoogle Scholar
  2. 2.
    D.F. Stern and S.I.T. Kennedy, J. Virol. 34:665–674 (1980).PubMedGoogle Scholar
  3. 3.
    D.F. Stern and S.I.T. Kennedy, J. Virol. 36:440–449 (1980).PubMedGoogle Scholar
  4. 4.
    S. Siddell, H. Wege, and V. ter Meulen, Curr. Topics in Microbiol, and Immunol. 99:131–163 (1982).CrossRefGoogle Scholar
  5. 5.
    L.S. Sturman and K.V. Holmes, Adv. Virus Res. 28, in press (1983).Google Scholar
  6. 6.
    D.F. Stern, L. Burgess, and B.M. Sefton, J. Virol. 42:208–219 (1982).PubMedGoogle Scholar
  7. 7.
    D.F. Stern and B.M. Sefton, J. Virol. 44:804–812 (1982).PubMedGoogle Scholar
  8. 8.
    D. Cavanagh, J. Gen. Virol. 53:93–103, (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    J.A. Lanser and C.R. Howard, J. Gen. Virol. 46:349–361 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    M.R. MacNaughton, M.H. Madge, H.A. Davies, and R.R, Dourmashkin, J. Virol. 24:821–825 (1977).PubMedGoogle Scholar
  11. 11.
    J.A. Lanser and C.R. Howard, J. Gen. Virol. 46:349–361 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    H.A. Davies, R.R. Dourmashkin, and M.R. MacNaughton, J. Gen. Virol. 53:67–74 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    C.N. Wadey and E.G. Westaway, Intervirology 15:19–27 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    D.F. Stem and B.M. Sefton, J. Virol. 44:794–803 (1982).Google Scholar
  15. 15.
    H.R.B. Pelham and R.J. Jackson, Eur. J. Biochem. 67:247–256 (1976).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Siddell, H. Wege, A. Barthel, and V. ter Meulen, J. Virol. 33:10–17 (1980).PubMedGoogle Scholar
  17. 17.
    P.J.M. Rottier, W.J.M.Spaan, M.C. Horzinek, and B.A.M. Van der Zeijst, J. Virol. 38:20–26 (1981).PubMedGoogle Scholar
  18. 18.
    J.L. Leibowitz, S.R. Weiss, E. Paavola, and C.W. Bond, J. Virol. 43:905–913, (1982).PubMedGoogle Scholar
  19. 19.
    S. Siddell, J. Gen. Virol. 64:113–125 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    M.C. Lai, C.D. Patton, R.S. Baric, and S.A. Stohlman, J. Virol. 46:1027–1033 (1983).PubMedGoogle Scholar
  21. 21.
    W. Spaan, P. Rottier, S. Smeekens, B.A.M. Van der Zeijst, H. Delius, J. Armstrong, M. Skinner, and S.G. Siddell, submitted for publication.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • David F. Stern
    • 2
  • Bartholomew Sefton
    • 1
  1. 1.Molecular Biology and Virology LaboratoryThe Salk InstituteSan DiegoUSA
  2. 2.Center for Cancer ResearchMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations