Membrane Ionic Currents, Current Noise, and Admittance in Isolated Cockroach Axons

  • Yves Pichon
  • Denis Poussart
  • Graham V. Lees


The application of fluctuation analysis to conduction processes in excitable membranes has developed rapidly since the early work of Derksen and Verveen (1966) on the node of Ranvier. First recordings of membrane current noise were made on the giant axon of the lobster (Poussart, 1969, 1971) and showed that the spontaneous noise consisted mainly of a 1/f component with an intensity related to the driving force for potassium ions. A second noise component with the apparent form of a relaxation process, 1/[1 + (f/f c )2], was later observed in both squid axons (Fishman, 1973; Conti et al., 1975; Fishman et al., 1975a) and frog nodes of Ranvier (Siebenga et al., 1973). Since then, numerous experiments have been done on these last two preparations and noise spectra arising from the transitions between “open” and “closed” states of sodium and potassium channels have been characterized. The relationship between the frequency characteristics of this noise and the observed or computed kinetics of the sodium and potassium conductances is, however, still controversial. In large-area noise measurements of squid axon, several technical problems such as low input impedance, potassium accumulation in the periaxonal space, and electrode polarization provide some impediments to a good quantitative analysis of ionic channel noise. In nodes of Ranvier, the situation is better but extrinsic noise is quite high and potassium also accumulates externally during long-lasting depolarizations.


Potassium Current Giant Axon Squid Giant Axon Squid Axon Extrinsic Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Begenisich, T., and Stevens, C. F., 1975, How many conductance states do potassium channels have? Biophys. J. 15:843–846.PubMedCrossRefGoogle Scholar
  2. Conti, F., DeFelice, L. J., and Wanke, E., 1975, Potassium and sodium ion current noise in the membrane of the squid giant axon, J. Physiol. London 248:45–82.PubMedGoogle Scholar
  3. Derksen, H. E., and Verveen, A. A., 1966, Fluctuations of resting neural membrane potential, Science 151:1388–1389.PubMedCrossRefGoogle Scholar
  4. Fishman, H. M., 1973, Relaxation spectra of potassium channel noise from squid axon membrane, Proc. Natl. Acad. Sci. USA 70:876–879.PubMedCrossRefGoogle Scholar
  5. Fishman, H. M., Moore, L. E., and Poussart, D., 1975a, Potassium-ion conductance noise in squid axon membrane, J. Membr. Biol. 24:305–328.PubMedCrossRefGoogle Scholar
  6. Fishman, H. M., Poussart, D., and Moore, L. E., 1975b, Noise measurements in squid axon membrane, J. Membr. Biol. 24:281–304.PubMedCrossRefGoogle Scholar
  7. Fishman, H. M., Moore, L. E., and Poussart, D., 1977, Ion movements and kinetics in squid axon. II. Spontaneous electrical fluctuations, Ann. N.Y. Acad. Sci. 303:399–423.PubMedGoogle Scholar
  8. Fishman, H. M., Poussart, D., and Moore, L. E., 1979, Complex admittance of Na+ conduction in squid axon, J. Membr. Biol. 50:43–63.PubMedCrossRefGoogle Scholar
  9. Fishman, H. M., Moore, L. E., and Poussart, D., 1982, Squid axon K conduction: Admittance and noise in short versus long-duration step clamps, in: The Biophysical Approach to Excitable Membranes (W. J. Adelman Jr. and D. E. Goldman, eds.), pp. 65–95, Plenum Press, New York.Google Scholar
  10. Hodgkin, A. L., and Huxley, A. F., 1952, Quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., London 117:500–544.Google Scholar
  11. Meves, H., and Pichon, Y., 1975, Effects of 4-aminopyridine on the potassium current in internally perfused giant axons of the squid, J. Physiol., London 251:60–62P.Google Scholar
  12. Meves, H., and Pichon, Y., 1977, The effect of internal and external 4-amino-pyridine on the potassium currents in intracellularly perfused squid giant axons, J. Physiol., London 268:511–532.Google Scholar
  13. Moore, L. E., Fishman, H. M., and Poussart, D., 1979, Chemically induced K conduction noise in squid axon, J. Membr. Biol. 47:99–112.PubMedCrossRefGoogle Scholar
  14. Neumcke, B., Schwarz, W., and Stämpfli, R., 1980, Difference between K channels in motor and sensory nerve fibres of the frog as revealed by fluctuation analysis, Pflügers Arch. 387:9–16.PubMedCrossRefGoogle Scholar
  15. Pelhate, M., and Pichon, Y., 1974, Selective inhibition of potassium current in the giant axon of the cockroach, J. Physiol., London 242:90–91P.Google Scholar
  16. Pichon, Y., 1967, Application de la technique du voltage imposé à l’étude de la fibre nerveuse isolée d’insecte, J. Physiol., Paris 9:282.Google Scholar
  17. Pichon, Y., 1970, Voltage-clamp study of the cockroach giant axon: A simple method, J. Physiol., London 210:86–88P.Google Scholar
  18. Pichon, Y., 1974, Axonal conduction in insects, in: Insect Neurobiology (J. E. Treherne, ed.), pp. 73–117, North Holland, Amsterdam.Google Scholar
  19. Pichon, Y., and Boistel, J., 1967, Current-voltage relations in the isolated giant axon of the cockroach under voltage-clamp conditions, J. Exp. Biol. 47:343–355.PubMedGoogle Scholar
  20. Pichon, Y., and Treherne, J. E., 1974, The effects of sodium-transport inhibitors and cooling on membrane potentials in cockroach central nervous connectives, J. Exp. Biol. 61:203–218.PubMedGoogle Scholar
  21. Pichon, Y., Meves, H., and Pelhate, M., 1982, Effects of aminopyridines on ionic currents and ionic channel noise in unmyelinated axons, in: Effects of Aminopyridines and Similarly Acting Drugs on Nerve, Muscle and Synapse (P. Lechat, S. Thesleff and W. C. Bowman, eds.), pp. 53–68, Pergamon Press, Oxford.Google Scholar
  22. Poussart, D., 1969, Nerve membrane current noise: Direct measurement under voltage clamp, Proc. Natl. Acad. Sci. USA 64:95–99.PubMedCrossRefGoogle Scholar
  23. Poussart, D., 1971, Membrane current noise in lobster axon under voltage clamp, Biophys. J. 11:211–234.PubMedCrossRefGoogle Scholar
  24. Poussart, D., and Ganguly, U., 1977, Rapid measurement of system kinetics, Proc. IEEE 65:741–747.CrossRefGoogle Scholar
  25. Poussart, D., Moore, L. E., and Fishman, H. M., 1977, Ion movement and kinetics in squid axon. I. Complex admittance, Ann. N.Y. Acad. Sci. 303:355–379.PubMedGoogle Scholar
  26. Siebenga, E., Meyer, A., and Verveen, A. A., 1973, Membrane shot noise in electrically depolarized nodes of Ranvier, Pflügers Arch. 341:87–96.PubMedCrossRefGoogle Scholar
  27. Treherne, J. E., and Pichon, Y., 1972, The insect blood-brain barrier, in: Advances in Insect Physiology, IX (J. E. Treherne, M. J. Berridge, and V. B. Wigglesworth, eds.), pp. 257–308, Academic Press, London.CrossRefGoogle Scholar
  28. van den Berg, R. J., Siebenga, E., and de Bruin, G., 1977, Potassium ion noise currents and inactivation in voltage-clamped nodes of Ranvier, Nature 265:177–179.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Yves Pichon
    • 1
  • Denis Poussart
    • 2
  • Graham V. Lees
    • 1
  1. 1.Département de BiophysiqueLaboratoire de Neurobiologie Cellulaire du C.N.R.S.Gif sur YvetteFrance
  2. 2.Département de Génie électriqueUniversité LavalCanada

Personalised recommendations