Advertisement

Halogen Corrosion of Metals

  • Phillip L. Daniel
  • Robert A. Rapp

Abstract

Halogens and many halogen compounds are very corrosive. In fact, iodine was discovered when, as an impurity in soda ash, it caused corrosion of copper vessels.1 Hence, materials for containing and handling halogens and corrosive halogen compounds must be selected with particular care.

Keywords

Scale Growth Parabolic Rate Constant Average Corrosion Rate Parabolic Kinetic Bromine Vapor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Standen, H. F. Mark, J. J. McKetta, Jr., and D. F. Othmer (eds.), Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed., John Wiley, New York (1963).Google Scholar
  2. 2.
    J. H. Canterford and R. Colton, Halides of the Transition Elements: Halides of the Second and Third Row Transition Metals, John Wiley, London (1968).Google Scholar
  3. 3.
    J. H. Canterford and R. Colton, Halides of the Transition Elements: Halides of the First Row Transition Metals, John Wiley, London (1969).Google Scholar
  4. 4.
    D. Brown, Halides of the Transition Elements: Halides of the Lanthanides and Actinides, John Wiley, London (1968).Google Scholar
  5. 5.
    JANAF Thermo chemical Tables, U.S. Department of Commerce PB 168 370, Dow Chemical Co., Clearinghouse for Scientific and Technical Information, Midland, Mich. (1965).Google Scholar
  6. 6.
    C. E. Wicks and F. E. Block, Thermodynamic Properties of 65 Elements-Their Oxides, Halides, Carbides, and Nitrides, Bulletin 605, Bureau of Mines, Government Printing Office, Washington, D.C. (1963).Google Scholar
  7. 7.
    L. L. Quill (ed.), The Chemistry and Metallurgy of Miscellaneous Materials: Thermodynamics, McGraw-Hill, New York (1950).Google Scholar
  8. 8.
    J. W. Hamer, M. S. Malmberg, and B. J. Rubin, Theoretical Electromotive Force for Cells Containing a Single Solid or Molten Fluoride, Bromide, or Iodide, J. Electrochem. Soc. 112, 750–756 (1965).CrossRefGoogle Scholar
  9. 9.
    O. Kubaschewski, E. L. Evans, and C. B. Alcock, Metallurgical Thermochemistry, Pergamon Press, Oxford (1967).Google Scholar
  10. 10.
    E. Steinmetz and H. Roth, Freie Standard-Bildungsenthalpien der Fluoride nach der Temperaturfunktion, J. Less-Common Metals 16, 295–342 (1968).CrossRefGoogle Scholar
  11. 11.
    W. H. Skelton and J. W. Patterson, Free Energy Changes for Displacement Reactions Involving Metals and Their Fluorides, J. Less-Common Metals 31, 47 (1973).CrossRefGoogle Scholar
  12. 12.
    J. H. Simons, Fluorine Chemistry, Vol. I, Academic Press, New York (1950).Google Scholar
  13. 13.
    J. H. Simons, Fluorine Chemistry, Vol. V, Academic Press, New York (1964).Google Scholar
  14. 14.
    R. C. Weast (editor-in-chief), Handbook of Chemistry and Physics, Chemical Rubber Co., Cleveland (1970).Google Scholar
  15. 15.
    T. B. Reed, Free Energy of Formation of Binary Compounds, MIT Press, Cambridge, Mass. (1971).Google Scholar
  16. 16.
    W. H. Skelton and J. W. Patterson, Free Energy Determinations by Solid Galvanic Cell Measurements for Selected Metal, Metal Fluoride Reactions, J. Less-Common Metals 31, 47–60 (1973).CrossRefGoogle Scholar
  17. 17.
    K. Schafer and E. Lax, Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik, und Technik, Vol. II, Pt. 3, Springer-Verlag, Berlin (1956).Google Scholar
  18. 18.
    E. M. Levin, C. R. Robbins, and H. F. McMurdie, Phase Diagrams for Ceramists (and supplement), American Ceramic Society, Columbus, Ohio (1969).Google Scholar
  19. 19.
    P. G. Shewmon, Diffusion in Solids, McGraw-Hill, New York (1963).Google Scholar
  20. 20.
    E. T. Turkdogan, The Theory of Enhancement of Diffusion-Limited Vaporization Rates by Convection-Condensation Process, Trans. Met. Soc. AIME (Amer. Inst. Mining, Met., Petrol. Eng.) 230, 740–750 (1964).Google Scholar
  21. 21.
    H. H. Kellog, Vaporization Chemistry in Extractive Metallurgy, Trans. Met. Soc. AIME (Amer. Inst. Mining, Met., Petrol. Eng.) 236, 602–615 (1966).Google Scholar
  22. 22.
    P. Kofstad, High Temperature Oxidation of Metals, John Wiley, New York (1966).Google Scholar
  23. 23.
    G. C. Wood, Oxidation of Metals, in Techniques of Metals Research, Vol. IV, part 2, International Publishers, New York (1970).Google Scholar
  24. 24.
    P. E. Brown, J. M. Crabtree, and J. F. Duncan, The Kinetics of the Reaction of Elementary Fluorine with Copper Metal, J. Inorg. Nucl. Chem. 1, 202–212 (1955).CrossRefGoogle Scholar
  25. 25.
    P. M. O’Donnell and A. E. Spakowski, The Fluorination of Copper, J. Electrochem. Soc. 111(6), 633–636 (1964).CrossRefGoogle Scholar
  26. 26.
    W. R. Myers and W. B. DeLong, Fluorine Corrosion. High-Temperature Attack on Metals by Fluorine and Hydrogen Fluoride. Behavior of Insulated Steel Parts in Fluorine Cells, Chem. Eng. Progr. 44(5), 359–362 (1948).Google Scholar
  27. 27.
    A. K. Kuriakose and J. L. Margrave, Kinetics of Reaction of Elemental Fluorine. III. Fluorination of Silicon and Boron, J. Phys. Chem. 68, 2671–2675 (1964).CrossRefGoogle Scholar
  28. 28.
    E. A. Gulbransen, Surface Studies with the Vacuum Microbalance: High-Temperature Reactions, Advan. Catalysis 5, 119 (1953).CrossRefGoogle Scholar
  29. 29.
    W. Y. Shiu, D. J. Young, and M. J. Dignam, Kinetics of Chlorination of Metallic Sodium at Low Temperatures, Oxid. Metals 7(2), 77–93 (1973).CrossRefGoogle Scholar
  30. 30.
    G. L. Hung, I. M. Ritchie, R. J. Esdaile, and J. V. Sanders, Nickel-Fluorine Reactions in the Presence of Xenon, J. Catalysis 25(3), 460–462 (1972).CrossRefGoogle Scholar
  31. 31.
    M. J. Dignam and D. A. Huggins, A Kinetic Study of the Heterogeneous Reactions of Metallic Sodium with Chlorine and Bromine, J. Electrochem. Soc. 114(2), 117–123 (1967).CrossRefGoogle Scholar
  32. 32.
    D. E. Rosner and H. D. Allendorf, Kinetics of the Attack of Molybdenum by Dissociated Chlorine, J. Phys. Chem. 69(12), 4290–4296 (1965).CrossRefGoogle Scholar
  33. 33.
    D. E. Rosner and H. D. Allendorf, Kinetics of the Attack of Refractory Solids by Atomic and Molecular Fluorine, J. Phys. Chem. 75(3), 308–317 (1971).CrossRefGoogle Scholar
  34. 34.
    Y. Hasegawa, M. Shiojiri, and S. Matsumura, Quartz-Crystal Microbalance for Studying Chemical Reactions of Thin Metal Films, Shinku 13(9), 296–302 (1970).CrossRefGoogle Scholar
  35. 35.
    M. Shiojiri, Y. Hasegawa, and Y. Tsujikura, Thermal Effect of Ultrasonic Vibration of Quartz-Crystal Microbalance on Chemical Reactions, Japan. J. Appl. Phys. 10(1), 143–148 (1971).CrossRefGoogle Scholar
  36. 36.
    J. Gordon and F. L. Holloway, Handling Gaseous Fluorine and Chlorine Trifluoride in the Laboratory, Ind. Eng. Chem. 52(5), 63A–66A, 69A (1960).CrossRefGoogle Scholar
  37. 37.
    C. Slesser and S. R. Schram (eds.), Preparation, Properties, and Technology of Fluorine and Organic Fluoro Compounds, McGraw-Hill, New York (1951).Google Scholar
  38. 38.
    H. W. Schmidt, Handling and Use of Fluorine and Fluorine-Oxygen Mixtures in Rocket Systems, NASA SP-3037, National Aeronautics and Space Administration, Washington, D.C. (1967).Google Scholar
  39. 39.
    R. H. McBride, Metering of Hydrofluoric Acid and Fluorine, AECD-3690, E. I. duPont de Nemours and Co., Wilmington, Del. (1945).Google Scholar
  40. 40.
    J. F. Froning, M. K. Richards, T. W. Stricklin, and S. G. Turnbull, Purification and Compression of Fluorine, Ind. Eng. Chem. 39, 275 (1947).CrossRefGoogle Scholar
  41. 41.
    H. F. Priest and A. V. Grosse, Storage of Fluorine in Pressure Cylinders, Ind. Eng. Chem. 39, 279 (1947).CrossRefGoogle Scholar
  42. 42.
    S. H. Smiley and C. R. Schmitt, Continuous Disposal of Fluorine, Ind. Eng. Chem. 46(2), 244–247 (1954).CrossRefGoogle Scholar
  43. 43.
    C. J. Sterner and A. H. Singleton, The Compatibility of Various Metals and Carbon with Liquid Fluorine, WADD-TR-60–436, Wright Air Development Division, Wright-Patterson Air Force Base, Ohio (1960).Google Scholar
  44. 44.
    J. S. Sconce (ed.), Chlorine: Its Manufacture, Properties and Uses, Reinhold, New York (1967).Google Scholar
  45. 45.
    C. Wagner, Beitrag zur Theorie des Anlauf Vorgangs, Z. Phys. Chem. B21, 25–41 (1933).Google Scholar
  46. 46.
    C. Wagner, Beitrag zur Theorie des Anlauf Vorgangs II, Z. Phys. Chem. B32, 447–462 (1936).Google Scholar
  47. 47.
    C. Wagner, Diffusion and High Temperature Oxidation of Metals, in Atom Movements, pp. 153–173, American Society for Metals, Cleveland (1951).Google Scholar
  48. 48.
    R. A. Rapp and D. A. Shores, Solid Electrolyte Galvanic Cells, in Techniques of Metals Research, Vol. IV, Pt. 2 (R. A. Rapp, ed.), pp. 123–192, John Wiley, New York (1970).Google Scholar
  49. 49.
    C. Ilschner-Gench and C. Wagner, Local Cell Action During the Scaling of Metals, I, J. Electrochem. Soc. 105, 198–200 (1958).CrossRefGoogle Scholar
  50. 50.
    C. S. Tedmon, Jr., The Effect of Oxide Volatilization on the Oxidation Kinetics of Chromium and Iron-Chromium Alloys, J. Electrochem. Soc. 113, 766–768 (1966).CrossRefGoogle Scholar
  51. 51.
    J. P. Hirth and G. M. Pound, Condensation and Evaporation, Nucleation and Growth Kinetics, in Progress in Materials Science, Vol. 11, Macmillan, New York (1963).Google Scholar
  52. 52.
    C. Gelain, A. Cassuto, and P. LeGoff, Kinetics and Mechanism of Low-Pressure, High-Temperature Oxidation of Silicon-II, Oxid. Metals 3, 139–151 (1971).CrossRefGoogle Scholar
  53. 53.
    H. Graham and H. Davis, Oxidation/Vaporization Kinetics of Chromium(III) Oxide, J. Amer. Ceram. Soc. 54, 89–93 (1971).CrossRefGoogle Scholar
  54. 54.
    C. Wagner, Passivity During the Oxidation of Silicon at Elevated Temperatures, J. Appl. Phys. 29, 1295–1297 (1958).CrossRefGoogle Scholar
  55. 55.
    E. T. Turkdogan, P. Gieveson, and L. S. Darken, Enhancement of Diffusion-Limited Rates of Vaporization of Metals, J. Phys. Chem. 67, 1647–1654 (1963).CrossRefGoogle Scholar
  56. 56.
    F. P. Fehlner and N. F. Mott, Oxidation in the Thin-Film Range, in Oxidation of Metals and Alloys (D. L. Douglass, ed.), pp. 37–62, American Society for Metals, Metals Park, Ohio (1971).Google Scholar
  57. 57.
    C. Wagner, Formation of Thin Oxide Films on Metals, Corrosion Sci. 13, 23–52, (1973).CrossRefGoogle Scholar
  58. 58.
    R. Herchl, N. N. Khoi, T. Homma, and W. W. Smeltzer, Effect of Product Condensation on Reaction-Enhanced Vaporization Rates and on the Transition from Homogeneous to Heterogeneous Reaction in High-Temperature Metal Oxidation, Oxid. Metals 4, 35–49 (1972).CrossRefGoogle Scholar
  59. 59.
    L. Berry and J. Paidassi, Sur la cinétique et le mécanisme de reaction due nickel avec l’oxygène aux températures élevées, C.R. Acad. Sci., Ser. C 262, 1353–1356 (1966).Google Scholar
  60. 60.
    J. J. Van den Broeck and J. L. Meijering, Kinetics of the Oxidation of Nickel and Some of Its Alloys, Acta Met. 16, 375–379 (1968).CrossRefGoogle Scholar
  61. 61.
    P. Kofstad, Effect of Impurities on the Defects in Oxides and Their Relationship to Oxidation of Metals,Corrosion 24, 379–388 (1968).Google Scholar
  62. 62.
    W. E. Boggs, R. H. Kachik, and G. E. Pellissier, The Effects of Crystallographic Orientation and Oxygen Pressure on Oxidation of Iron, J. Electrochem. Soc. 114, 32–39 (1967).CrossRefGoogle Scholar
  63. 63.
    W. E. Boggs, The Role of Structural and Compositional Factors in the Oxidation of Iron and Iron-Based Alloys, in High Temperature Gas-Metal Reactions in Mixed Environments (S. A. Jansson and Z. A. Foroulis, eds.), Metallurgical Society of AIME, New York (1973).Google Scholar
  64. 64.
    A. G. Goursat and W. W. Smeltzer, Oxidation of Iron, in Reviews of High-Temperature Materials, Vol. I (J. Newkirk, ed.), pp. 351–396, Freund Publications, Tel-Aviv (1973).Google Scholar
  65. 65.
    A. Brückman, Mechanism of Transport of Matter Through the Scales During Oxidation of Metals and Alloys, Corrosion Sci. 7, 51–59 (1967).CrossRefGoogle Scholar
  66. 66.
    S. Mrowec, Mechanism of High-Temperature Oxidation of Metals and Alloys, Corrosion Sci. 7, 563–578 (1967).CrossRefGoogle Scholar
  67. 67.
    J. A. Roberson and R. A. Rapp, The Observation of Markers During the Oxidation of Columbium, Trans. Met. Soc. AIME(Amer. Inst. Mining, Met., Petrol. Eng.) 239, 1327–1331 (1967).Google Scholar
  68. 68.
    J. S. Sheasby, The Oxidation of Niobium in the Temperature Range 450°-720°C., J. Electrochem. Soc. 115, 695–700 (1968).CrossRefGoogle Scholar
  69. 69.
    C. Wagner, Reaction Types in the Oxidation of Alloys, Z. Elektrochem. 63, 772–782 (1959).Google Scholar
  70. 70.
    R. A. Rapp, Kinetics, Microstructures, and Mechanism of Internal Oxidation. Its Effect and Prevention in High-Temperature Alloy Oxidation, Corrosion 21, 382–401 (1965).Google Scholar
  71. 71.
    J. Swisher, Internal Oxidation, in Oxidation of Metals and Alloys (D. L. Douglass, ed.), pp. 235–267, American Society for Metals, Metals Park, Ohio (1971).Google Scholar
  72. 72.
    G. C. Wood, Fundamental Factors Determining the Mode of Scaling of Heat-Resistant Alloys, Werkst. Korros. 22, 491–503 (1971).CrossRefGoogle Scholar
  73. 73.
    B. Chattopadhyay and G. C. Wood, The Transient Oxidation of Alloys, Oxid. Metals 2, 373–400 (1970).CrossRefGoogle Scholar
  74. 74.
    C. Wagner and K. E. Zimens, Die Oxydationsgeschwindigkeit von Nickel bei Kleinen Zusätzen von Chrom und Mangan, Acta Chem. Scand. 1, 547–565 (1947).CrossRefGoogle Scholar
  75. 75.
    F. A. Kroger, The Chemistry of Imperfect Crystals, North-Holland, New York (1964).Google Scholar
  76. 76.
    J. W. Stout and E. Catalano, Heat Capacity of Zinc Fluoride from 11 to 300°K. Thermodynamic Functions of Zinc Fluoride. Entropy and Heat Capacity Associated with the Antiferromagnetic Ordering of Manganous Fluoride, Ferrous Fluoride, Cobaltous Fluoride, and Nickelous Fluoride, J. Chem. Phys. 23, 2013–2022 (1955).CrossRefGoogle Scholar
  77. 77.
    T. C. Ehlert, R. A. Kent, and J. L. Margrave, Mass Spectrometric Studies at High Temperatures. VI. The Sublimation Pressure of Nickel(II) Fluoride, J. Amer. Chem. Soc. 86, 5093–5095 (1964).CrossRefGoogle Scholar
  78. 78.
    C. F. Hale, E. J. Barber, H. A. Bernhardt, and K. E. Rapp, High-Temperature Corrosion of Some Metals and Ceramics in Fluorinating Atmospheres, K-1459, Nuclear Division, Union Carbide Corporation, Oak Ridge, Tenn. (1960).Google Scholar
  79. 79.
    Y. A. Luk’yanychev, I. I. Astakhov, and N. S. Nikolaev, Mechanism of the Formation of Fluoride Films on Nickel and Their Properties, Bulletin of the Academy of Science of the U.S.S.R., Division of Chemical Science 1965, 577–581 (1965). [Izv. Akad. Nauk SSSR, Ser. Khim. 4, 588–593 (1965).]Google Scholar
  80. 80.
    R. L. Jarry, W. H. Gunther, and J. Fischer, The Mechanism and Kinetics of the Reaction Between Nickel and Fluorine, ANL-6684, Argonne National Laboratory, Argonne, III. (1963).Google Scholar
  81. 81.
    R. L. Jarry, J. Fischer, and W. H. Gunther, The Mechanism of the Nickel-Fluorine Reaction, J. Electrochem. Soc. 110, 346–349 (1963).CrossRefGoogle Scholar
  82. 82.
    A. H. Singleton, J. F. Tompkins, Jr., S. Kleinberg, and C. J. Sterner, Corrosion of Metals by Liquid Fluorine, Ind. Eng. Chem. 57(3), 47–53 (1965).CrossRefGoogle Scholar
  83. 83.
    R. B. Jackson, Corrosion of Metals and Alloys by Fluorine, NP-8845, Allied Chemical Corporation, Morristown, N.J. (1960).Google Scholar
  84. 84.
    S. Kleinberg and J. F. Tompkins, The Compatibility of Various Metals with Liquid Fluorine, ASD-TDR-62–250, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio (1962).Google Scholar
  85. 85.
    W. A. Cannon, S. K. Asunmaa, W. D. English, and N. A. Tiner, Passivation Reactions of Nickel and Copper Alloys with Fluorine, Trans. Met. Soc. AIME (Amer. Inst. Mining, Met., Petrol. Eng.) 242(8), 1635–1643 (1968).Google Scholar
  86. 86.
    N. F. Mott, A Theory of the Formation of Protective Oxide Films on Metals, Trans. Faraday Soc. 35, 1175–1177 (1939).CrossRefGoogle Scholar
  87. 87.
    K. Hauffe and B. Ilschner, The Mechanism of the Oxidation of Nickel at Low Temperatures, Z. Elektrochem. 58, 382–387 (1954).Google Scholar
  88. 88.
    S. Lawroski, W. A. Rodger, R. C. Vogel, and V. H. Munnecke, Chemical Engineering Division Summary Report-Oct., Nov., Dec. 1959, ANL-6101, Argonne National Laboratory, Argonne, III. (1960).Google Scholar
  89. 89.
    F. J. Kohl and C. A. Stearns, Vaporization of Chromium Oxide from the Surface of TDNiCr Under Oxidizing Conditions, NASA TM X-52879, National Aeronautics and Space Administration, Washington, D.C. (1970).Google Scholar
  90. 90.
    J. D. McKinley, Mass-Spectrometric Investigation of the Nickel-Fluorine Surface Reaction, J. Chem. Phys. 45(5), 1690–1693 (1966).CrossRefGoogle Scholar
  91. 91.
    T. W. Godwin and C. L. Lorenzo, Ignition of Several Metals in Fluorine, Paper No. 740–58, presented at the American Rocket Society Meeting, New York (Nov. 17–21, 1958).Google Scholar
  92. 92.
    W. H. Gunther and M. J. Steindler, Laboratory Investigations in Support of Fluid-Bed Fluoride Volatility Processes. Part XIV-The Corrosion of Nickel and Nickel Alloys by Fluorine, Uranium Hexafluoride, and Selected Volatile Fission Product Fluorides at 500°C, ANL-7241, Argonne National Laboratory, Argonne, III. (1966).Google Scholar
  93. 93.
    M. J. Steindler and R. C. Vogel, Corrosion of Materials in the Presence of Fluorine at Elevated Temperatures, ANL-5662, Argonne National Laboratory, Argonne, III. (1957).Google Scholar
  94. 94.
    E. D. Weisert, Hastelloy Alloy C, Chem. Eng. 59(6), 297–312 (1952).Google Scholar
  95. 95.
    C. Williams, Reactor Science and Engineering Department Progress Report for January 1-March 31, 1952, BNL-176, Brookhaven National Laboratory, Upton, N.Y. (1952).Google Scholar
  96. 96.
    A. A. Chilenskas and G. E. Gunderson, Engineering Development of Fluid-Bed Fluoride Volatility Processes. Part VII-The Corrosion of Nickel in Process Environments, ANL-6979, Argonne National Laboratory, Argonne, III. (1965).Google Scholar
  97. 97.
    L. E. Trevorrow and W. H. Gunther, Fluorine Corrosion Test of Nickel-Thoria Material, ANL-6687, Argonne National Laboratory, Argonne, III. (1963).Google Scholar
  98. 98.
    J. W. Johnson, D. Cubicciotti, and C. M. Kelly, Interactions of Metals with Their Molten Salts. I. The Nickel-Nickel Chloride System, J. Phys. Chem. 62, 1107–1109 (1958).CrossRefGoogle Scholar
  99. 99.
    W. Fisher and R. Gewher, The Thermal Properties of Halides. IX. Melting and Boiling Points and Polarization Effects of the Manganous (Type) Halides, Z. Anorg. Allgem. Chem. 222, 303–311 (1935).CrossRefGoogle Scholar
  100. 100.
    J. P. Coughlin, High-Temperature Heat Content of Nickel Chloride, J. Amer. Chem. Soc. 73, 5314–5315 (1951).CrossRefGoogle Scholar
  101. 101.
    H. Schafer, L. Bayer, G. Briel, K. Etzel, and K. Krehl, Sättigungsdrucke der Chloride MnCl2, FeCl2, CoCl2 und NiCl2, Z. Anorg. Allgem. Chem. 278, 300–309 (1959).CrossRefGoogle Scholar
  102. 102.
    K. L. Tseitlin and V. A. Strunkin, Effect of Water Vapor Concentration on the Corrosion of Metals by Chlorine, J. Appl. Chem. USSR 29(11), 1793–1800 (1956). (Zh. Prikl. Khim. 29(11), 1664–1672 (1956).)Google Scholar
  103. 103.
    K. L. Tseitlin, Effects of Water Vapor on the Corrosion of Metals by Chlorine,Zh. Prikl. Khim. 29, 1182–1191 (1956).Google Scholar
  104. 104.
    A. A. Murashkina, Production of Fittings Corrosion-Resistant to Chlorine at the Zhdanov Heavy Machine Construction Plant, Teknol. Organ. Proizvod. 1971(5), 57–58 (1971).Google Scholar
  105. 105.
    B. J. Downey, J. C. Bermel, and P. J. Zimmer, Kinetics of the Nickel-Chlorine Reaction at Temperatures Between 350 and 600°C, Corrosion 25(12), 502–508 (1969).Google Scholar
  106. 106.
    P. J. Zimmer, Personal Communication, Department of Chemistry, Villanova University, Villanova, Pa. (Aug. 1973).Google Scholar
  107. 107.
    K. L. Tseitlin and V. A. Strunkin, Effect of Dilution of Chlorine with Nitrogen on the Corrosion of Metals at High Temperatures, J. Appl. Chem. USSR 31, 1832–1838 (1958). [Zh. Prikl. Khim. 31, 1843–1849 (1958).]Google Scholar
  108. 108.
    K. L. Tseitlin, Effect of Temperature in Corrosion of Metals by Chlorine, J. Appl. Chem. USSR 28(5), 467–472 (1955). [Zh. Prikl. Khim. 28(5), 490–496 (1955).]Google Scholar
  109. 109.
    K. Hauffe and J. Hinrichs, High-Temperature Corrosion of Nickel in Chlorine and Chlorine-Oxygen Mixtures, Werkst. Korros. 21(11), 954–965 (1970).CrossRefGoogle Scholar
  110. 110.
    J. D. McKinley, Mass-Spectrometric Investigation of the High-Temperature Reaction Between Nickel and Chlorine,J. Chem. Phys. 40(1), 120–125 (1964).CrossRefGoogle Scholar
  111. 111.
    J. D. McKinley, Jr., and K. E. Shuler, Kinetics of the High-Temperature Heterogeneous Reaction of Chlorine and Nickel Between 1200 and 1700°K, J. Chem. Phys. 28, 1207–1212 (1958).CrossRefGoogle Scholar
  112. 112.
    P. J. Gegner and W. L. Wilson, Corrosion Resistance of Titanium and Zirconium in Chemical Plant Exposures, Corrosion 15, 341t–350t (1959).Google Scholar
  113. 113.
    R. S. Sheppard, D. R. Hise, P. J. Gegner, and W. L. Wilson, Performance of Titanium vs. Other Materials in Chemical Plant Exposures, Corrosion 18, 211t–218t (1962).Google Scholar
  114. 114.
    M. H. Brown, W. B. DeLong, and J. R. Auld, Corrosion by Chlorine and by Hydrogen Chloride at High Temperatures, Ind. Eng. Chem. 39, 839–844 (1947).CrossRefGoogle Scholar
  115. 115.
    J. Halfdanarson and K. Hauffe, High-Temperature Chlorination of Nickel and Nickel-Chromium Alloys, Werkst. Korros. 24(1), 8–15 (1973).CrossRefGoogle Scholar
  116. 116.
    H. Schafer and H. Jacob, Sättigungsdrucke über Nickelbromid, Z. Anorg. Allgem. Chem. 286, 56–57 (1956).CrossRefGoogle Scholar
  117. 117.
    G. S. Haines, Materials for Bromine Containers, Ind. Eng. Chem. 41, 2792–2797 (1949).CrossRefGoogle Scholar
  118. 118.
    D. E. Lake and A. A. Gunkler, Moisture: Key to Bromine Corrosion, Chem. Eng. 67, 137–138 (1960).Google Scholar
  119. 119.
    L. Gal-Or, Corrosion of Metals by Bromine, Hamatekhet 1971 (4), 1–3 (1971).Google Scholar
  120. 120.
    P. D. Miller, E. F. Stephan, W. E. Berry, and W. K. Boyd, Corrosion Resistance of Nickel and Two Nickel Alloys to Gaseous Bromine, BMI-X-489, Battelle Memorial Institute, Columbus, Ohio (1968).Google Scholar
  121. 121.
    J. D. McKinley, Mass-Spectrometric Investigation of the Nickel-Bromine Surface Reaction, J. Chem. Phys. 40(2), 576–581 (1964).CrossRefGoogle Scholar
  122. 122.
    R. F. Rolsten, Iodide Metals and Metal Iodides, John Wiley, New York (1961).Google Scholar
  123. 123.
    V. I. Ginzburg and O. I. Kabakova, Corrosion Stability of Metals in Iodine and Iodine-Containing Media, Zashch. Metal. 5(6), 627–632 (1969).Google Scholar
  124. 124.
    N. S. Mott, Materials Selection Chart, Chem. Eng. 57(8), 197–200 (1950).Google Scholar
  125. 125.
    L. Arbellot, Behavior of Nickel and Its Alloys in the Presence of Halogens, Corros. et Anticorros. 5, 112–119 (1957).Google Scholar
  126. 126.
    H. von Wartenberg, Copper Fluoride, Z. Anorg. Allgem. Chem. 241, 381–394 (1939).CrossRefGoogle Scholar
  127. 127.
    H. M. Haendler, L. H. Towle, E. F. Bennett, and W. L. Patterson, Jr., The Reaction of Fluorine with Copper and Some of Its Compounds. Some Properties of Copper(II) Fluoride,J. Amer. Chem. Soc. 76, 2178–2179 (1954).CrossRefGoogle Scholar
  128. 128.
    R. A. Kent, J. D. McDonald, and J. L. Margrave, Mass-Spectrometric Studies at High Temperatures. IX. The Sublimation Pressure of Copper(II) Fluoride, J. Phys. Chem. 70, 874–877 (1966).CrossRefGoogle Scholar
  129. 129.
    J. Gillardeau, L. M. Vincent, and J. Oudar, Behavior of Copper in Gas Fluorinating Medium, Metallurgie (Mons, Belg.) 6(3), 125–132 (1966).Google Scholar
  130. 130.
    S. M. Toy, W. D. English, and W. E. Crane, Studies of Galvanic Corrosion Couples in Liquid Fluorine, Corrosion 24(12), 418–421 (1968).Google Scholar
  131. 131.
    J. D. Jackson, Corrosion in Cryogenic Liquids, Chem. Eng. Progr. 57(4), 61–64 (1961).Google Scholar
  132. 132.
    J. M. Crabtree, C. S. Lees, and K. Little, The Copper Fluorides. Part I-X-Ray and Electron Microscope Examination, J. Inorg. Nucl. Chem. 1, 213–217 (1955).CrossRefGoogle Scholar
  133. 133.
    Y. A. Luk’yanychev, N. S. Nikolaev, I. I. Astakhov, and V. I. Luk’yanychev, A Study of the Mechanism of Copper Fluorination at High Temperatures, Dokl. Akad. Nauk SSSR 147(5), 1130–1132 (1962).Google Scholar
  134. 134.
    U. R. Evans, Crack-Heal Mechanism of the Growth of Invisible Films on Metals, Nature 157, 732 (1946).CrossRefGoogle Scholar
  135. 135.
    N. F. Mott and N. Cabrera, Theory of the Oxidation of Metals, Rept. Progr. Phys. 12, 163–184 (1949).CrossRefGoogle Scholar
  136. 136.
    J. Gillardeau, Y. Macheteau, P. Plurien, and J. Oudar, Some Aspects of the Fluorination of Copper and Iron, Oxid. Metals 2(3), 319–330 (1970).CrossRefGoogle Scholar
  137. 137.
    J. Gillardeau, Thesis, Atomic Energy Commission, France, Report 3212, Faculté des Sciences, Paris (1967).Google Scholar
  138. 138.
    P. M. O’Donnell and A. E. Spakowski, Reaction of Copper and Fluorine from 800° to 1200°F, NASA-TN-D-768, National Aeronautics and Space Administration, Washington, D.C. (1961).Google Scholar
  139. 139.
    M. J. Steindler and R. C. Vogel, Corrosion of Metals in Gaseous Fluorine at Elevated Temperatures, ANL-5560, Argonne National Laboratory, Argonne, III. (1957).Google Scholar
  140. 140.
    J. Gillardeau, L. Vincent, and J. Oudar, The Existence of a Nucleation Phenomenon in the Reaction of Fluorine on Copper, C.R. Acad. Sci., Ser. C 263(25), 1469–1472 (1966).Google Scholar
  141. 141.
    J. Gillardeau and P. Plurien, Contribution à l’étude de la fluoruration du cuivre, in Proceedings of the 6th International Symposium on the Reactivity of Solids, John Wiley, New York (1969).Google Scholar
  142. 142.
    R. Landau and R. Rosen, Industrial Handling of Fluorine, Ind. Eng. Chem. 39(3), 281–286 (1947).CrossRefGoogle Scholar
  143. 143.
    G. Brauer, Handbook of Preparative Inorganic Chemistry, Academic Press, New York (1963).Google Scholar
  144. 144.
    C. M. Fontana, E. Gorin, G. A. Kidder, and C. S. Meridith, Chlorination of Methane with Copper Chloride Melts,Ind. Eng. Chem. 44, 363–368 (1952).CrossRefGoogle Scholar
  145. 145.
    R. A. J. Shelton, Vapor Pressures of Solid Copper(I) Halides, Trans. Faraday Soc. 57, 2113–2118 (1961).CrossRefGoogle Scholar
  146. 146.
    American Brass Company, Corrosion Resistance of Copper and Copper Alloys, Chem. Eng. 58(1), 108–112 (1951).Google Scholar
  147. 147.
    K. L. Tseitlin, Corrosion of Metals by Chlorine at High Temperatures, J. Appl. Chem. USSR 27(9), 889–893 (1954). [Zh. Prikl. Khim. 27(9), 953–958 (1954).]Google Scholar
  148. 148.
    K. L. Tseitlin, The Effect of Air on the Corrosion of Metals by Chlorine at High Temperatures, J. Appl. Chem. USSR 29, 253–259 (1956). [Zh. Prikl. Khim. 29, 229–235 (1956).]Google Scholar
  149. 149.
    L. G. Harrison and C. F. Ng, Reactivity and Catalytic Activity of Copper Chlorides. 1. Kinetics of the Reaction of Copper(I) Chloride with Chlorine, Trans. Faraday Soc. 67(6), 1787–1800 (1971).CrossRefGoogle Scholar
  150. 150.
    Le-Van-My, G. Perinet, and P. Bianco, Thermal Modification of Copper Iodide and Copper Bromide, Bull. Soc. Chim. France 1965, 3651–3654 (1965).Google Scholar
  151. 151.
    J. Krug and L. Sieg, Die Struktur der Hochtemperatur-Modifikationen des CuBr und CuJ, Z. Naturforsch. A 7a, 369–371 (1952).Google Scholar
  152. 152.
    Brussels University, A Survey of Some Metal Oxidation Problems, EURAEC-1619, Quarterly Report No. 13, Jan. 1-Mar. 31, 1966, U.S. Atomic Energy Commission, Washington, D.C. (1966).Google Scholar
  153. 153.
    Brussels University, A Study of Some Metal Oxidation Problems. Solid Gas Reactions Study Section: Oxidation of Metals, EURAEC-1897, Final Report No. 3, U.S. Atomic Energy Commission, Washington, D.C. (1967).Google Scholar
  154. 154.
    R. W. G. Wyckoff, Crystal Structures, Vol. I, Wiley-Interscience, New York (1963).Google Scholar
  155. 155.
    R. W. G. Wyckoff, Crystal Structures, Vol. II, Wiley-Interscience, New York (1964).Google Scholar
  156. 156.
    K. F. Zmbov and J. L. Margrave, Mass-Spectrometric Studies at High Temperatures. XV. Sublimation Pressures of Chromium, Manganese, and Iron Trifluorides and the Heat of Dissociation of Fe2F6(g), J. Inorg. Nucl. Chem. 29, 673–680 (1967).CrossRefGoogle Scholar
  157. 157.
    R. A. Kent and J. L. Margrave, Mass-Spectrometric Studies at High Temperatures. VIII. The Sublimation Pressure of Iron(II) Fluoride, J. Amer. Chem. Soc. s87, 4754–4756 (1965).CrossRefGoogle Scholar
  158. 158.
    Y. Macheteau, J. Gillardeau, P. Plurien, and J. Oudar, Fluorination Kinetics of Iron, Oxid. Metals 4(3), 141–149 (1972).CrossRefGoogle Scholar
  159. 159.
    P. M. O’Donnell, Kinetics of the Fluorination of Iron, NASA-TN-D-3575, National Aeronautics and Space Administration, Washington, D.C. (1966).Google Scholar
  160. 160.
    P. M. O’Donnell, Kinetics of the Fluorination of Iron, J. Electrochem. Soc. 114(3), 218–221 (1967).CrossRefGoogle Scholar
  161. 161.
    U. R. Evans, The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications, St. Martin’s Press, New York (1960).Google Scholar
  162. 162.
    G. Heinemann, F. G. Garrison, and P. A. Haber, Corrosion of Steel by Gaseous Chlorine, Ind. Eng. Chem. 38, 497–499 (1946).CrossRefGoogle Scholar
  163. 163.
    S. F. Bohlken, A. Klinkenberg, and H. W. Nicolai, Reaction of Iron with Gaseous Chlorine, Ind. Chim. Beige. 20, Special Number, 579–581 (1955).Google Scholar
  164. 164.
    S. F. Bohlken, A. Klinkenberg, and H. W. Nicolai, Reaction of Iron with Gaseous Chlorine, C.R. Congr. Intern. Chim. Ind. 27e, 2–4 (1954).Google Scholar
  165. 165.
    R. J. Fruehan, The Rate of Chlorination of Metals and Oxides. Part I. Fe, Ni, and Sn in Chlorine, Met. Trans. 3(10), 2585–2592 (1972).CrossRefGoogle Scholar
  166. 166.
    W. A. Luce and R. B. Seymour, Construction Materials in the Paper Industry. Part. II. Bleaching, Chem. Eng. 57(10), 217–223 (1950).Google Scholar
  167. 167.
    S. D. Kirkpatrick and J. R. Callaham, Fourteenth Annual Report on Materials of Construction, Chem. Eng. 57(11), 107–154 (1950).Google Scholar
  168. 168.
    M. R. Bloch, A. Bodenheimer, J. A. Epstein, and I. Schnerb, Prevention of Corrosion of Stainless Steel by Molecular Bromine, Corrosion Sci. 11(1), 453–461 (1971).CrossRefGoogle Scholar
  169. 169.
    L. Gal-Or, Corrosion of Metals by Bromine,Hamatekhet 1971(4), 1–3 (1971).Google Scholar
  170. 170.
    E. I. Gurovich, Kinetics of the Formation of Corrosion Centers on Metals, Bull. Acad. Sci. U.R.S.S., Cl. Sci. Math. Nat., Sir. Khim. 1937, 1453–1484 (1937).Google Scholar
  171. 171.
    F. W. Fink and E. L. White, Corrosion Effects of Liquid Fluorine and Liquid Oxygen on Materials of Construction, Corrosion 17(2), 58t–60t (1961).Google Scholar
  172. 172.
    W. Davis, Jr., and F. D. Rosen, Constant Pressure Apparatus for Studying Reaction Rates, Rev. Sci. Instrum. 23, 332–334 (1952).CrossRefGoogle Scholar
  173. 173.
    M. G. Evans, The Attack of Aluminum by Chlorine. I. High-Pressure (100–600 torr) Investigation, Mem. Proc. Manchester Lit. Phil. Soc. 79, 13–28 (1935).Google Scholar
  174. 174.
    H. P. Godard, W. B. Jepson, M. R. Bothwell, and R. L. Kane, The Surface Oxide Film on Aluminum, in The Corrosion of Light Metals, John Wiley, New York (1967).Google Scholar
  175. 175.
    E. Rabald, Corrosion Guide, American Elsevier, New York (1968).Google Scholar
  176. 176.
    E. R. Hodges, Further Notes on Aluminum, Chem. News 123, 141 (1921).Google Scholar
  177. 177.
    L. R. Horst, Aluminum, Chem. Eng. (New York) 59(5), 300–316 (1952).Google Scholar
  178. 178.
    P. M. O’Donnell,Kinetics of the Fluorination of Beryllium, NASA-TN-D-3992, National Aeronautics and Space Administration, Washington, D.C. (1967).Google Scholar
  179. 179.
    P. M. O’Donnell, Kinetics of the Fluorination of Beryllium, J. Electrochem. Soc. 114, 1206–1209 (1967).CrossRefGoogle Scholar
  180. 180.
    J. S. Lukesh, Research on the Problem of Ductility in Beryllium, NP-7706, Progress Report No. 2, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio (1958).Google Scholar
  181. 181.
    M. Lemarchands and M. Jacob, Effect of Temperature on Phenomena of Chemical Inertia (Especially the Action of Chlorine on Metals), Bull. Soc. Chim. 53, 1139–1144 (1933).Google Scholar
  182. 182.
    V. A. Fedoseev, Combustion of Magnesium and Aluminum Particles in Different Media, Fiz. Aerodispersnykh Sist. S1970(3), 61–72 (1970).Google Scholar
  183. 183.
    L. McCulloch, Reactions of Magnesium and Aluminum with Iodine and with Concentrated Sulfuric Acid, J. Chem. Educ. 24, 240 (1947).CrossRefGoogle Scholar
  184. 184.
    J. H. Cabaniss and J. G. Williamson, A Literature Survey of the Corrosion of Metal Alloys in Liquid and Gaseous Fluorine, NASA-TM-X-54612, National Aeronautics and Space Administration, Washington, D.C. (1963).Google Scholar
  185. 185.
    D. A. Huggins, Kinetics of the Reactions of Metallic Sodium with Chlorine, Bromine, and Oxygen, Diss. Abstr. 26(5), 2494–2495 (1965).Google Scholar
  186. 186.
    A. Tamisier, Chemical Inertness and Temperature, Bull. Union Physicians 61(493), 261–263 (1967).Google Scholar
  187. 187.
    G. L. Ericson, W. K. Boyd, and P. D. Miller, Corrosion of Titanium and Titanium-Base Alloys in Liquid and Gaseous Fluorine, NP-6729, Battelle Memorial Institute, Columbus, Ohio (1958).Google Scholar
  188. 188.
    M. J. Steindler, D. V. Steidl, and R. K. Steunenberg, The Fluorination of Metallic Titanium, ANL-6002, Argonne National Laboratory, Argonne, III. (1959).Google Scholar
  189. 189.
    E. E. Millaway and M. H. Kleinman, Factors Affecting Water Content Needed to Passivate Titanium in Chlorine, Corrosion 23(4), 88–97 (1967).Google Scholar
  190. 190.
    Imperial Chemical Industries, Ltd., Failure of Titanium in Dry Chlorine, Tappi 44, 183A-184A (1961).Google Scholar
  191. 191.
    G. E. Hutchinson and P. H. Permar, Corrosion Resistance of Commercially Pure Titanium, Corrosion 5(10), 319–325 (1949).Google Scholar
  192. 192.
    R. K. Swandby, Corrosion Charts: Guide to Materials Selection, Chem. Eng. 69(11), 186–201 (1962).Google Scholar
  193. 193.
    K. Shimizu, Corrosion Resistance of Titanium to Chlorine and Chlorides, Chitanium Jirukoniumu 15(2), 39–43 (1967).Google Scholar
  194. 194.
    I. Y. Klinov and V. V. Andreeva, Titanium and Its Alloys as a Material of Construction, Khim. Mashinostroenie 1960(4), 5–8 (1960).Google Scholar
  195. 195.
    L. B. Golden, I. R. Lane, Jr., and W. L. Acherman, Corrosion Resistance of Titanium, Zirconium, and Stainless Steel in Mineral Acids, Ind. Eng. Chem. 44, 1930–1935 (1952).CrossRefGoogle Scholar
  196. 196.
    K. L. Tseitlin, L. L. Faingol’d, and V. A. Strunkin, Chemical Stability of Titanium in Halogen Acids and Halides,Metalloved. Titana, Akad. Nauk SSSR, Gos. Kom. Sov. Min. SSSR po Chem. i Tsvetn. Met., Inst. Met., Tr. Pyatogo Soveshch., Moscow 1963, 150–159 (1964).Google Scholar
  197. 197.
    O. J. C. Runnalls and L. M. Pidgeon, Observations on the Preparation of Iodide Titanium,J. Metals 4, 843–847 (1952).Google Scholar
  198. 198.
    O. Glemser, H. Roesky, and K. H. Hellberg, Preparation of Chromium(V) Fluoride and Chromium(VI) Fluoride, Angew. Chem. Intern. Ed. Engl. 2, 266–267 (1963). [Angew. Chem. 75, 346 (1963).]CrossRefGoogle Scholar
  199. 199.
    A. J. Edwards, Chromium Pentafluoride and Chromium Oxide Tetrafluoride, Proc. Chem. Soc. 1963, 205 (1963).Google Scholar
  200. 200.
    R. J. Sime and N. W. Gregory, Vaporization of Chromium(III) Bromide. Evidence for Chromium(IV) Bromide, J. Amer. Chem. Soc. 82, 93–96 (1960).CrossRefGoogle Scholar
  201. 201.
    R. L. Jarry, W. H. Gunther, and J. Fisher, Metal-Fluorine Reactions. Chemical Engineering Division Summary Report for Jan. Feb., Mar. 1960, ANL-6145, pp. 110–114, Argonne National Laboratory, Argonne, III.Google Scholar
  202. 202.
    L. Stein and R. C. Vogel, The Behavior of Uranium, Thorium, and Other Selected Materials in Bromine Trifluoride, Bromine Pentafluoride, Chlorine Trifluoride, and Fluorine at Elevated Temperatures, ANL-5441, Argonne National Laboratory, Argonne, III. (1955).Google Scholar
  203. 203.
    A. Garlick and P. D. Wolfenden, Fracture of Zirconium Alloys in Iodine Vapor, J. Nucl. Mater. 41(3), 274–292 (1971).CrossRefGoogle Scholar
  204. 204.
    A. Garlick, Stress-Corrosion Cracking of Zirconium Alloys in Iodine Vapor, Eff. Environ. Mater. Prop. Nucl. Syst., Proc. Intern. Conf. Corrosion 1971, 21–35 (1971).Google Scholar
  205. 205.
    J. C. Wood, Stress-Corrosion Cracking of Zirconium Alloy Fuel Sheaths in Iodine Vapor, AECL-4353, Chalk River Nuclear Laboratory, Chalk River, Ontario, 13–15 (1972).Google Scholar
  206. 206.
    A. L. Percy, Tantalum, Chem. Eng. 59(4), 259–264 (1952).Google Scholar
  207. 207.
    W. E. Pratt, L. R. Scribner, and C. G. Chisholm, Wet and Dry Chlorine vs. Materials of Chemical Plant Construction, Chem. Eng. 54(2), 219 (1947).Google Scholar
  208. 208.
    G. Gottschalk and G. M. Neumann, Simulation of Heterogeneous Gas Equilibria. I. Metal-Halogen Systems with Examples for Tungsten-Halogen Systems, Z. Metallk. 62(12), 910–915 (1971).Google Scholar
  209. 209.
    M. Iwasaki, T. Yahata, K. Suzuki, and K. Oshima, Reaction of Metallic Tungsten and Fluorine Gas, Kogyo Kagaku Zasshi 65, 1165–1167 (1962). [UCRL-Trans-1044(L), University of California, Berkeley, Calif. (1962).]CrossRefGoogle Scholar
  210. 210.
    P. C. Abbott and R. E. Stickney, Quasi-Equilibrium Analysis of the Reaction of Atomic and Molecular Fluorine with Tungsten, J. Phys. Chem. 76(20), 2930 (1972).CrossRefGoogle Scholar
  211. 211.
    J. D. McKinley, Jr., Mass-Spectrometric Investigation of the Surface Reaction of Tungsten with Chlorine-Oxygen Mixtures, in Proceedings of the 6th International Symposium on the Reactivity of Solids, John Wiley, New York (1969).Google Scholar
  212. 212.
    N. P. Galkin, M. F. Sviderskii, N. P. Petranin, and V. A. Bardin, Kinetics of the Fluorination of Tungsten-Rhenium Melts (at 200–600°C),Russ. J. Inorg. Chem. 16(5), 711–713 (1971). [Zh. Neorg. Khim. 16, 1345–1348 (1971).]Google Scholar
  213. 213.
    C. M. Nelson, G. E. Boyd, and W. T. Smith, Magnetochemistry of Technetium and Rhenium, J. Amer. Chem. Soc. 76, 348 (1954).CrossRefGoogle Scholar
  214. 214.
    A. Chow, Losses of Iridium During Heating in Various Atmospheres, Talanta 19(7), 899–902 (1972).CrossRefGoogle Scholar
  215. 215.
    Y. I. Ivashentsev and R. I. Timonova, Chlorination of Palladium and Behavior of Its Chloride on Heating, Russ. J. Inorg. Chem. 12(3), 308–310 (1967). [Zh. Neorg. Khim. 12(3), 592–595 (1967).]Google Scholar
  216. 216.
    Y. I. Ivashentsev and R. I. Timonova, Thermographic Study of Platinum Chlorination and Decomposition of Platinum Tetrachloride, Zh. Vses. Khim. Obshchest. 12(1), 109–110 (1967).Google Scholar
  217. 217.
    J. S. Sconce, Chlorine: Its Manufacture, Properties, and Uses, Reinhold, New York (1962).Google Scholar
  218. 218.
    P. M. O’Donnell, A Kinetic Study of the Fluorination of Silver,J. Electrochem. Soc. 117 (10), 1273–1275 (1970).CrossRefGoogle Scholar
  219. 219.
    G. Tammann, The Velocity of Action of Halogens, Oxygen and Nitrogen upon Metals as Judged on the Basis of Their Tempering Colors, Rec. Trav. Chim. 42, 547–551 (1923).CrossRefGoogle Scholar
  220. 220.
    V. G. Tammann and W. Koster, The Velocity of Reaction of Oxygen, Hydrogen Sulfide, and Halogens with Metals,Z. Anorg. Allgem. Chem. 123, 196–221 (1922).CrossRefGoogle Scholar
  221. 221.
    J. A. Lorenzen, Atmospheric Corrosion of Silver, Inst. Environ. Sci., Tech. Meet., Proc. 17, 110–116 (1971).Google Scholar
  222. 222.
    C. Wagner, Beitrag zur Theorie des Anlaufvorganges. II, Z. Phys. Chem. 32B, 447–462 (1936).Google Scholar
  223. 223.
    C. Wagner, Reactions of Metals and Alloys with Oxygen, Sulphur, and Halogens at High Temperatures, Pittsburgh Intern. Cong. Surface React. 1948, 77–82 (1948).Google Scholar
  224. 224.
    H. B. Linford and M. J. Ford, Corrosion of Silver in a Water-Saturated Chlorine Atmosphere,Trans. Electrochem. Soc. 93(1), 16–26 (1948).CrossRefGoogle Scholar
  225. 225.
    J. L. Weininger, Room-Temperature Tarnishing of Silver in Bromine and Iodine, J. Electrochem. Soc. 105, 577–581 (1958).CrossRefGoogle Scholar
  226. 226.
    C. Gensch and K. Hauffe, Speed of Bromination of Some Silver Alloys, Z. Phys. Chem. 195, 386–393 (1950).Google Scholar
  227. 227.
    K. Hauffe and C. Gensch, Uber die Bromierungsgeschwindigkeit von Silber-Cadmium-Legierungen, Z. Phys. Chem. 195, 116–128 (1950).Google Scholar
  228. 228.
    D. M. Smyth and M. Cutler, Tarnishing Reactions of Silver in Iodine Atmospheres, J. Electrochem. Soc. 106, 107–113 (1959).CrossRefGoogle Scholar
  229. 229.
    G. Tammann, Tarnishing of Metals, Z. Anorg. Allgem. Chem. 111, 78–89 (1921).CrossRefGoogle Scholar
  230. 230.
    R. Dubrisay, Periodic Phenomena in the Corrosion of Metals by Vapors, C.R. Acad. Sci. 229, 829–831 (1949).Google Scholar
  231. 231.
    D. Balarew, Disperse Structure of Solid Systems and Its Thermodynamic Foundation, Kolloid-Z. 101, 47–52 (1942).CrossRefGoogle Scholar
  232. 232.
    A. Landsberg and C. L. Hoatson, Kinetics and Equilibriums of the Gold-Chlorine System, J. Less-Common Metals 22(3), 327–339 (1970).CrossRefGoogle Scholar
  233. 233.
    S. Lawroski, R. C. Vogel, M. Levenson, and V. H. Munnecke, Chemical Engineering Division Quarterly Report-Jan., Feb., Mar. 1963, ANL-6687, Argonne National Laboratory, Argonne, III. (1963).Google Scholar
  234. 234.
    H. M. Haendler, W. L. Patterson, Jr., and W. J. Bernard, The Reaction of Fluorine with Zinc, Nickel, and Some of Their Binary Compounds. Some Properties of Zinc and Nickel Fluorides, J. Amer. Chem. Soc. 74, 3167–3168 (1952).CrossRefGoogle Scholar
  235. 235.
    M. H. Zirin, The Formation of Cadmium Fluoride by Metal-Fluorine Reaction, Oxid. Metals 3(4), 319–329 (1971).CrossRefGoogle Scholar
  236. 236.
    M. H. Zirin, Observation on the Kinetic Behavior of a Parabolic Type Metal-Gas Reaction with Induced Cracks in the Scale: A Note, Oxid. Metals 3(6), 539–544 (1971).CrossRefGoogle Scholar
  237. 237.
    H. Sugier, Reaction of Cadmium Iodination and Isotopic Exchange in the CdI2(s)-I2(g) System, Nukleonika 12, 367–372 (1967).Google Scholar
  238. 238.
    E. Montignie, Action of Iodine on Copper and of Iodine on Mercury, Bull. Soc. Chim. 8, 202–209 (1941).Google Scholar
  239. 239.
    V. A. P’yankov, Rate of Reaction of Several Gases with a Mercury Surface, Ukr. Khim. Zh. 28, 585–589 (1962).Google Scholar
  240. 240.
    R. A. Ogg, Jr., H. C. Martin, and P. A. Leighton, Kinetics of the Vapor-Phase Reaction of Mercury and Halogens, J. Emer. Chem. Soc. 58, 1922–1924 (1936).CrossRefGoogle Scholar
  241. 241.
    H. Moissan, Sur la préparation à l’état de pureté du trifluorure de bore et du tétrafluorure de silicum et sur quelques constantes physiques de ces composes, C.R. Acad. Sci. 139, 711–714 (1904).Google Scholar
  242. 242.
    H. Moissan, Nouvelles Recherches sur le Fluor, Ann. Chim. Phys., Ser. 6 24, 224–282 (1891).Google Scholar
  243. 243.
    A. K. Kuriakose and J. L. Margrave, Kinetics of Reaction of Elemental Fluorine. III. Fluorination of Silicon and Boron, J. Phys. Chem. 68, 2671–2675 (1964).CrossRefGoogle Scholar
  244. 244.
    V. V. Tyapkina and N. S. Guseva, Interaction of a Silicon Surface with Fluorine and Hydrogen Fluoride, Russ. J. Phys. Chem. 40(5), 573–576 (1966).Google Scholar
  245. 244a.
    V. V. Tyapkina and N. S. Guseva[Zh. Fiz. Khim. 40(5), 1064–1069 (1966).]Google Scholar
  246. 245.
    M. L. Bernard, A. Cointot, and J. P. Coulombier, Kinetics of the Fluorination of Powdered Silicon by Gaseous Fluorine, C.R. Acad. Sci., Ser. C 275(3), 159–162 (1972).Google Scholar
  247. 246.
    P. S. Brallier, The Chlorination of Metals, Trans. Amer. Electrochem. Soc. 49, 257–266 (1926).Google Scholar
  248. 247.
    J. P. Dismukes and R. Ulmer, Gas-Phase Etching of Silicon with Chlorine, J. Electrochem. Soc. 118(4), 634–636 (1971).CrossRefGoogle Scholar
  249. 248.
    S. E. Craig, Jr., Gas-Phase Etching of Silicon with Chlorine, J. Electrochem. Soc. 118(12), 2034–2035 (1971).CrossRefGoogle Scholar
  250. 249.
    G. N. Khodalevich, L. G. Sakovich, and V. V. Serebrennikov, Bromination of Silicon in the Presence of Copper and Its Bromides, Zh. Prikl. Khim. 45(8), 1863–1864 (1972).Google Scholar
  251. 250.
    J. I. Carasso and I. Stelzer, The Surface Chemistry of Germanium. II. Erosion by Chlorine, J. Chem. Soc. A1960, 1797–1803 (1960).CrossRefGoogle Scholar
  252. 251.
    D. R. Olander, Surface Chemical Kinetics and Gas-Phase Diffusion in the Germanium-Iodine Reaction, Ind. Eng. Chem. Fundam. 6(2), 178–188 (1967).CrossRefGoogle Scholar
  253. 252.
    W. J. Heinecke and S. Ing, Jr., Surface Kinetics and Physics Investigation of the Reaction Between Single-Crystal Germanium and Iodine, J. Appl. Phys. 32, 1498–1504 (1961).CrossRefGoogle Scholar
  254. 253.
    I. G. Khar’yuzov, G. A. Kurov, and E. A. Rakova, Local Growing of Epitaxial Films, Protsessy Rosta Strukt. Monokrist. Sloev. Poluprov., Tr. Simp. 1, 296–304 (1966).Google Scholar
  255. 254.
    T. Arizumi and I. Akasaki, Etch Patterns and the Mechanism of Etching of Germanium by Iodine Vapor, Japan. J. Appl. Phys. 2, 143–150 (1963).CrossRefGoogle Scholar
  256. 255.
    J. J. Lander and J. Morrison, Low-Energy Electron-Diffraction Study of the Surface Reactions of Germanium with Oxygen and with Iodine, J. Appl. Phys. 34, 1411–1415 (1963).CrossRefGoogle Scholar
  257. 256.
    D. R. Olander, Variable Property, Interfacial Velocity, and the Multicomponent Diffusion Effects in the Transport-Limited Reaction of Iodine and Germanium, Ind. Eng. Chem., Fundam. 6(2), 188–194 (1967).CrossRefGoogle Scholar
  258. 257.
    N. F. Zakhariya and V. P. Grechanovskii, Iodination of Metallic Germanium, Ukr. Khim. Zh. 30(11), 1141–1142 (1964).Google Scholar
  259. 258.
    H. M. Haendler, S. F. Bartram, W. J. Bernard, and D. Kippax, The Reaction of Fluorine with Tin, Its Oxides and Sulfides, J. Amer. Chem. Soc. 76, 2179–2180 (1954).CrossRefGoogle Scholar
  260. 259.
    Y. P. Kuznetsov, E. S. Petrov, and A. I. Vakhrusheva, Chemistry of the Reaction of Tin Oxides with Chlorine in the Presence of a Reducing Agent. III. Reaction of Tin with Chlorine, Phosgene and Tin Tetrachloride, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 1968(5), 30–33 (1968).Google Scholar
  261. 260.
    V. Fomin, A. G. Zvezdin, and A. N. Ketov, High-Temperature Process of Tin Chlorination, J. Appl. Chem. USSR 44(2), 409–411 (1971).Google Scholar
  262. 260.a
    V. Fomin, A. G. Zvezdin, and A. N. Ketov[Zh. Prikl. Khim. 44(2), 416–418 (1971).]Google Scholar
  263. 261.
    C. L. Mantell, Utilization of Chlorine in Recovery of Tin and Tin Salts from Tin Plate Scrap, Trans. Amer. Electrochem. Soc. 49, 267–275 (1926).Google Scholar
  264. 262.
    G. Whitaker, Corrosion of Metals in Fluorine and Hydrofluoric Acid, Corrosion 6, 283–285 (1950).Google Scholar
  265. 263.
    K. H. Roll, Lead and Lead Alloys, Chem. Eng. 60(2), 264–280 (1953).Google Scholar
  266. 264.
    K. H. Roll, Discussion of Corrosion of Metals in Fluorine and Hydrofluoric Acid, Corrosion 9, 74 (1953).Google Scholar
  267. 265.
    M. R. Bloch, D. Kaplan, and I. Schnerb, Storage of Bromine, Israeli Patent 8660 (Mar. 8, 1956).Google Scholar
  268. 266.
    H. Sugier, Isotopic Exchange in the PbI2(s)-I2(g) System and the Mechanism of Lead Iodination, Nukleonika 12, 357–365 (1967).Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Phillip L. Daniel
    • 1
  • Robert A. Rapp
    • 2
  1. 1.Materials Technology DepartmentGoodyear Atomic CorporationPiketonUSA
  2. 2.Department of Metallurgical EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations