Advertisement

Temporal Lobe Epilepsy: Its Possible Contribution to the Understanding of the Functional Significance of the Amygdala and of Its Interaction with Neocortical-Temporal Mechanisms

  • P. Gloor
Part of the Advances in Behavioral Biology book series (ABBI, volume 2)

Abstract

In the human brain, the amygdala forms a prominent subcortical mass of grey matter located within the depths of the temporal lobe. Its function usually has been discussed in terms of its connections to the hypothalamus and to the various autonomic, endocrine and motivational mechanisms represented there (Gloor, 1960). Little consideration has been given, up to now, to the nature and significance of the afferent input to the amygdala which in higher mammals and man seems to be derived largely from the temporal neocortex (Segundo et al., 1955; Whitlock and Nauta, 1956; Niemer and Goodfellow, 1966; Jones and Powell, 1970). The view I would like to put forward, in this essay, is that the amygdala and the temporal neocortex of higher mammals and man can be regarded as a functional system subserving complex motivated behavior patterns dependent upon highly differentiated perceptual and cognitive functions. It is hoped that this holistic view of temporal lobe function may further our understanding of the relationship between neocortical and limbic physiology.

Keywords

Electrical Stimulation Temporal Lobe Temporal Lobe Epilepsy Montreal Neurological Institute Motivational Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AJURIAGUERRA, J. De & BLANC, C. Le rhinencéphale dans l’organisation cérébrale. Neurobiologie du système limbique d’après les faits et les hypotheses. In Th. Alajouanine (Ed.), Les Grandes Activités du Rhinencéphale, Vol. II. Paris: Masson et Cie., 1961, 297–337.Google Scholar
  2. ALTMANN, S. A. A field study of the sociobiology of rhesus monkeys (Macaca mulatta). Annals of the New York Academy of Science, 1962, 102, 338–435.CrossRefGoogle Scholar
  3. ANAND, B. K., & BROBECK, J. R. Hypothalamic control of food intake. Yale Journal of Biology and Medicine, 1951, 24, 123–140.Google Scholar
  4. ANDERSSON, B., & MCCANN, S. M. DRINKING, antidiuresis and milk ejection from electrical stimulation within the hypothalamus of the goat. Acta Physiologica Scandinavica, 1955, 35, 191–201.CrossRefGoogle Scholar
  5. ATEMA, J., TODD, J. H., & BARDACH, J. E. Olfaction and behavioral sophistication in fish. In C. Pfaffmann (Ed.), Olfaction and Taste III, Proceedings of the Third International Symposium. New York: The Rockefeller University Press, 1969. Pp. 241–251.Google Scholar
  6. BENTE, D., & KLUGE, E. Sexuelle Reizzustände im Rahmen des Uncinatus — Syndroms. Archives of Psychiatry, 1953, 190, 357–376.CrossRefGoogle Scholar
  7. BINGLEY, T. Mental symptoms in temporal lobe epilepsy and temporal lobe gliomas. Acta Psychiatrica et Neurologica Scandinavica, 1958, 33, Suppl. 120, 120–151.CrossRefGoogle Scholar
  8. BRONSTEIN, B. Zur Physiologie und Pathologie des Rhinencephalons. Schweizer Archiv fur Neurologie und Psychiatrie, 1951, 67, 264–273.Google Scholar
  9. BURGHARDT, G. M., & HESS, E. H. Factors influencing the chemical release of prey attack in newborn snakes. Journal of Comparative and Physiological Psychology, 1968, 6, 289–295.CrossRefGoogle Scholar
  10. CAGGIULA, A. R., & HOEBEL, B. G. “Copulation-reward” site in the hypothalamus. Science, 1966, 153, 1284–1285.CrossRefGoogle Scholar
  11. COWAN, W. M., RAISMAN, G., & POWELL, T. P. S. The connexions of the amygdala. Journal of Neurology and Neurosurgery, 1965, 28, 137–151.CrossRefGoogle Scholar
  12. COWEY, A., & GROSS, C. G. Effects of foveal prestriate and infero-temporal lesions on visual discrimination by rhesus monkeys. Experimental Brain Research, 1970, 11, 128–144.CrossRefGoogle Scholar
  13. DALY, D. Ictal affect. American Journal of Psychiatry, 1958, 115, 97–108.Google Scholar
  14. DALY, D. P., & MULDER, D. W. Gelastic epilepsy. Neurology, 1957, 7, 189–192.CrossRefGoogle Scholar
  15. DELGADO, J. M. R. Emotional behavior in animals and humans. Psychiatric Research Report, 1960, 12, 259–266.Google Scholar
  16. DICKS, D., MYERS, R. E., & KLING, A. Uncus and amygdala lesions: effects on social behavior in the free ranging rhesus monkey. Science, 1969, 165, 69–71.CrossRefGoogle Scholar
  17. DOWNER, J. L. de C. Changes in visual gnostic functions and emotional behavior following unilateral temporal pole damage in the “split brain” monkey. Nature, 1961, 191, 50–51.CrossRefGoogle Scholar
  18. DREIFUSS, J. J., MURPHY, J. T., & GLOOR, P. Contrasting effects of two identified amygdaloid efferent pathways on single hypothalamic neurons. Journal of Neurophysiology, 1968, 31, 237–248.Google Scholar
  19. EGGER, M. D., & FLYNN, J. P. Effects of electrical stimulation of the amygdala upon hypothalamically elicited attack behavior in cats. Journal of Neurophysiology, 1963, 26, 705–720.Google Scholar
  20. ELEFTHERIOU, B. E., & ZOLOVICK, A. J. Effect of amygdaloid lesions on oestrous behavior in the deermouse. Journal of Reproduction and Fertility, 1966, 11, 451–453.CrossRefGoogle Scholar
  21. ERVIN, F. R., DELGADO, J., MARK, V. H., & SWEET, W. H. RAGE: A paraepileptic phenomenon? Epilepsia, 1969, 10, 417.Google Scholar
  22. FEINDEL, W., & PENFIELD, W. Localization of discharge in temporal lobe automatism. Archives of Neurology and Psychiatry, 1954, 72, 605–630.CrossRefGoogle Scholar
  23. FERNANDEZ De MOLINA, A., & HUNSPERGER, R. W. Central representation of affective reactions in forebrain and brainstem: electrical stimulation of amygdala, stria terminalis and adjacent structures. Journal of Physiology, 1959, 145, 251–265.Google Scholar
  24. FITZSIMONS, J. T. The hypothalamus and drinking. British Medical Journal, 1966, 22, 232–237.Google Scholar
  25. FONBERG, E. The role of the amygdaloid nucleus in animal behavior. Progress in Brain Research, 1967, 22, 273–281.CrossRefGoogle Scholar
  26. FONBERG, E., & DELGADO, J. M. R. Avoidance and alimentary reactions during amygdaloid stimulation. Journal of Neurophysiology, 1961, 24, 651–664.Google Scholar
  27. GANDELMAN, R., ZARROW, M. X., DENENBERG, V. H., & MYERS, M. Olfactory bulb removal eliminates maternal behavior in the mouse. Science, 1971, 171, 210–211.CrossRefGoogle Scholar
  28. GASTAUT, H. Corrélations entre le système nerveux végétatif et le système de la vie de relation dans le rhinencéphale. Journal de Physiologie (Paris), 1952, 44, 431–470.Google Scholar
  29. GASTAUT, H. Les troubles du comportement alimentaire chez les épileptiques psychomoteurs. Review of Neurology, 1955, 92, 55–62.Google Scholar
  30. GASTAUT, H., & Collomb, H. Etude du comportement sexuel chez les épileptiques psychomoteurs. Annales Medico Psychologiques, 1954, 112, 657–696.Google Scholar
  31. GASTAUT, H., MORIN, G., & LESEVRE, N. Etude du comportement des épileptiques psychomoteurs dans l’intervalle de leur crises. Les troubles de l’activité globale et de la sociabilité. Annales Médico Psychologiques, 1955, 113, 1–27.Google Scholar
  32. GENTIL, C. G., ANTUNES-RODRIGUES, J., NEGRO-VILAR, A., & COVIAN, M. Role of amygdaloid complex in sodium chloride and water intake in the rat. Physiology & Behavior, 1968, 3, 981–985.CrossRefGoogle Scholar
  33. GIBBS, F. A. Abnormal electrical activity in the temporal regions and its relationship to abnormalities of behavior. Research Publications, Association of Nervous and Mental Disease, 1956, 36, 278–294.Google Scholar
  34. GLOOR, P. Electrophysiological studies on the connections of the amygdaloid nucleus in the cat. Part I: The neuronal organization of the amygdaloid projection system. Electroencephalography and Clinical Neurophysiology, 1955, 7, 223–242.CrossRefGoogle Scholar
  35. GLOOR, P. Amygdala. In J. Field, H. W. Magoun and v. E. Hall (Eds.), Handbook of Physiology. Section I: Neurophysiology, Vol. II. Washington, D. C.: American Physiological Society, 1960. Pp. 1395–1420.Google Scholar
  36. GLOOR, P., & FEINDEL, W. Temporal lobe and affective behavior. In M. Monnier (Ed.), Physiologie des Vegetativen Nervensystems, Vol. II. Stuttgart: Hippokrates Verlang, 1963. Pp. 685–716.Google Scholar
  37. GROSS, C. G., BENDER, D. B., & ROCHA-MIRANDA, C. E. Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science, 1969, 166, 1303–1306.CrossRefGoogle Scholar
  38. GROSSMAN, S. P. Behavioral effects of chemical stimulation of the ventral amygdala. Journal of Comparative and Physiological Psychology, 1964, 57, 29–36.CrossRefGoogle Scholar
  39. GROSSMAN, S. P., & GROSSMAN, L. Food and water intake following lesions or electrical stimulation of the amygdala. American Journal of Physiology, 1963, 205, 761–765.Google Scholar
  40. HALL, E. A. Efferent connections of the basal and lateral nuclei of the amygdala in the cat. American Journal of Anatomy, 1963, 113, 139–145.CrossRefGoogle Scholar
  41. HARRIS, G. W., & MICHAEL, R. P. The activation of sexual behavior by hypothalamic implants of oestrogen. Journal of Physiology, 1964, 171, 275–301.Google Scholar
  42. HEATH, R. G., MONROE, R. R., & MICKLE, W. Stimulation of the amygdaloid nucleus in a schizophrenic patient. American Journal of Psychiatry, 1955, 111, 862–863.Google Scholar
  43. HEIMER, L., & NAUTA, W. J. H. The hypothalamic distribution of the stria terminalis in the rat. Brain Research, 1969, 13, 284–297.CrossRefGoogle Scholar
  44. HERRICK, C. J. The connections of the vomeronasal nerve, accessory olfactory bulb and amygdala in amphibia. Journal of Comparative Neurology, 1921, 33, 213–280.CrossRefGoogle Scholar
  45. HESS, W. R. Das Zwischenhirn. Syndrome, Lokalisationen, Funktionen. Basel: Benno Schwabe & Co., Verlag, 1949.Google Scholar
  46. HILTON, S. M., & ZBROZYNA, A. W. Amygdaloid region for defense reactions and its efferent pathways to the brainstem. Journal of Physiology, 1963, 165, 160–173.Google Scholar
  47. HINDE, R. A., & ROWELL, T. E. Communications for postures and facial expressions in rhesus monkey (Macaca mulatta). Proceedings Zoological Society (London), 1962, 138 (I), 1–21.Google Scholar
  48. HOEBEL, B. G. Feeding and self-stimulation. Annals New York Academy of Sciences, 1969, 157, 758–778.CrossRefGoogle Scholar
  49. JASPER, H. H., & RASMüSSEN, T. Studies of clinical and electrical responses to deep temporal stimulation in man with some considerations of functional anatomy. Research Publications, Association of Nervous and Mental Disease, 1958, 36, 316–334.Google Scholar
  50. JOHNSTON, R. B. Olfactory communication in the hamster. Ph.D. Thesis. Rockefeller University, 1970.Google Scholar
  51. JONES, E. G., & POWELL, T. P. S. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain, 1970, 93, 793–820.CrossRefGoogle Scholar
  52. KAADA, B. R., ANDERSEN, P., & JANSEN, J. Stimulation of the amygdaloid nucleus complex in unanesthetized cats. Neurology, 1954, 4, 48–64.CrossRefGoogle Scholar
  53. KAPPERS, C. V. A., HUBER, G. C., & CROSBY, E. C. The Comparative Anatomy of the Nervous System of Vertebrates, including Man. New York: The MacMillan Co., 1936. (Reprinted in 1960 by Hafner Publishing Co.)Google Scholar
  54. KEATING, E. G., KORMANN, L. A., & HOREL, J. A. The behavioral effects of stimulating and ablating the reptilian amygdala (Caiman Sklerops). Physiology & Behavior, 1970, 5, 55–59.CrossRefGoogle Scholar
  55. KIMURA, D. Right temporal lobe damage. Archives of Neurology, 1963, 8, 264–271.CrossRefGoogle Scholar
  56. KLING, A., DICKS, D., & GUROWITZ, E. M. Amygdalectomy and social behavior in a caged group of vertebrates (C. aethiops). Basel: Second International Congress on Primates, 1969, 1, 232–241.Google Scholar
  57. KLING, A., LANCASTER, J., & BENITONE, J. Amygdalectomy in the free ranging vervet (Cercoptithecus aethiops). Journal of Psychiatric Research, 1970, 7, 191–199.CrossRefGoogle Scholar
  58. KLüVER, H., & BUCY, P. “Psychic blindness” and other symptoms following bilateral temporal lobectomy in rhesus monkey. American Journal of Physiology, 1937, 119, 352–353.Google Scholar
  59. KLüVER, H., & BUCY, P. An analysis of certain effects of bilateral temporal lobectomy in the rhesus monkey with special reference to “psychic blindness”. Journal of Psychology, 1938, 5, 33–54.CrossRefGoogle Scholar
  60. KLüVER, H., & BUCY, P. Preliminary analysis of functions of the temporal lobes in monkeys. Archives of Neurology and Psychiatry, 1939, 42, 979–1000.CrossRefGoogle Scholar
  61. KUMMER, H. Social Organization of Hamadryas Baboons. Basel: S. Karger; Chicago and London: The University of Chicago Press; and Toronto: The University of Toronto Press, 1968.Google Scholar
  62. LEVETEAU, J., & MACLEOD, P. Olfactory discriminations in the rabbit olfactory glomerulus. Science, 1966, 153, 175–176.CrossRefGoogle Scholar
  63. LEWINSKA, M. K. Changes in eating and drinking produced by partial amygdala lesions in cat. Academie Polonaise des Sciences, Bulletin Serie des Sciences Biologiques, 1967, 15, 301–305.Google Scholar
  64. MACLEAN, P. D. The hypothalamus and emotional behavior. In W. Haymaker, E. Anderson and W. J. H. Nauta (Eds.), The Hypothalamus. Springfield, Illinois: Charles C. Thomas, 1969. Pp. 659–677.Google Scholar
  65. MACLEAN, P., & DELGADO, J. M. R. Electrical and chemical stimulation of frontotemporal portion of limbic system in the waking animal. Electroencephalography and Clinical Neurophysiology, 1953, 5, 91–100.CrossRefGoogle Scholar
  66. MARK, V. H., ERVIN, F. R., SWEET, W. H., and DELGADO, J. Remote telemeter stimulation and recording from implanted temporal lobe electrodes. Confinia Neurologica, 1969, 31, 86–93.CrossRefGoogle Scholar
  67. MARLER, P. Communication in monkeys and apes. In I. De Vore (Ed.), Primate Behavior: Field Studies of Monkeys and Apes. New York: Holt, Rinehart and Winston, 1965. Pp. 544–548.Google Scholar
  68. MATHEWS, D. F. Response patterns of single units in the olfactory bulb of the unanesthetized, curarized cat to air and odor. Ph.D. Thesis, Brown University, 1966.Google Scholar
  69. MILLER, N. E. Chemical coding of behavior in the brain. Science, 1965, 148, 328–338.CrossRefGoogle Scholar
  70. MILNER, B. Psychological defects produced by temporal lobe excisions. Research Publications, Association for Research in Nervous and Mental Disease, 1958, 36, 244–257.Google Scholar
  71. MILNER, B. Visual recognition and recall after right temporal lobe excisions in man. Neuropsychologia, 1968, 6, 191–210.CrossRefGoogle Scholar
  72. MISHKIN, M. Visual mechanisms beyond the striate cortex. In R. Russell (Ed.), Frontiers in Physiological Psychology. New York: Academic Press, 1966. Pp. 93–119.Google Scholar
  73. MULDER, D. W., & DALY, D. Psychiatric symptoms associated with lesions of temporal lobe. Journal of the American Medical Association, 1952, 150, 173–176.CrossRefGoogle Scholar
  74. MULLAN, S., & PENFIELD, W. Illusions of comparative interpretation and emotion. Archives of Neurology and Psychiatry, 1959, 81, 269–284.CrossRefGoogle Scholar
  75. MURPHY, J. T., DREIFUSS, J. J., & GLOOR, P. Topographical differences in the responses of single hypothalamic neurons to limbic stimulation. American Journal of Physiology, 1968, 214, 1443–1453.Google Scholar
  76. NAUTA, W. J. H. Neural associations of the amygdaloid complex in the monkey. Brain, 1962, 85, 505–520.CrossRefGoogle Scholar
  77. NELSON, K. Behavior and morphology in the glandulocaudine fishes (Ostariophysi, Characidae). University of California Publications in Zoology, 1964, 75(2), 59–152.Google Scholar
  78. NIEMER, W. T., & GOODFELLOW, E. F. Neocortical influence on the amygdala. Electroencephalography and Clinical Neurophysiology, 1966, 21, 429–436.CrossRefGoogle Scholar
  79. OLDS, J. A preliminary mapping of electrical reinforcing effects in the cat brain. Journal of Comparative and Physiological Psychiatry, 1956, 49, 281–285.CrossRefGoogle Scholar
  80. OLDS, J. Self-stimulation experiments and differential reward systems. In H. Jasper and L. D. Proctor (Eds.), Reticular Formation of the Brain. Boston: Little Brown & Co. (Henry Ford Hospital International Symposium), 1958, Pp. 671–687.Google Scholar
  81. PENFIELD, W. Memory mechanisms. Archives of Neurology and Psychiatry, 1952, 67, 178–191.CrossRefGoogle Scholar
  82. PENFIELD, W. The interpretive cortex. Science, 1959, 129, 1719–1725.CrossRefGoogle Scholar
  83. PENFIELD, W. Engrams in the human brain. Proceedings, Royal Society of Medicine, 1968, 61, 831–840.Google Scholar
  84. PENFIELD, W. Consciousness, memory and man’s conditioned reflexes. In K. H. Pribram (Ed.), On the Biology of Learning. New York, Chicago, San Francisco, Atlanta: Harcourt, Brace and World Inc., 1969. Pp. 127–168.Google Scholar
  85. PENFIELD, W., & JASPER, H. Epilepsy and the Functional Anatomy of the Human Brain. Boston: Little, Brown & Co., 1954.Google Scholar
  86. PENFIELD, W., & PEROT, Ph. The brain’s record of auditory and visual experience — A final summary and discussion. Brain, 1963, 86, 595–696.CrossRefGoogle Scholar
  87. PFAFFMANN, C. Summary of olfactory roundtable. In C. Pfaffmann (Ed.), Olfaction and Taste III, Proceedings of the Third International Symposium. New York: The Rockfeller University Press, 1969. Pp. 226–232.Google Scholar
  88. PFAFFMANN, C. Recent advances in the study of olfaction. In P. Gloor and J. P. Cordeau (Eds.), Recent Contributions to Neurophysiology, Suppl. No. 30, Electroencephalography and Clinical Neurophysiology. Amsterdam: Elsevier Publishing Co., 1971, in press.Google Scholar
  89. PLOOG, D. Verhaltensforschung und Psychiatrie. In H. W. Gruhle, R. Jung, W. Mayer-Gross, and M. Müller (Eds.), Psychiatrie der Gegenwart, Forschung und Praxis, Vol. I/1B Grundlagenforschung der Psychiatrie, Part B. Berlin, Göttingen, Heidelberg: Springer Verlag, 1964. Pp. 291–443.Google Scholar
  90. PLOOG, D. Social communication among animals. In F. O. Schmitt, G. C. Quarton, Th. Melnechuk and G. Adelman (Eds.), The Neurosciences Second Study Program. New York: The Rockefeller University Press, 1970. Pp. 349–361.Google Scholar
  91. PRIBRAM, K. H., & BAGSHAW, M. Further analysis of the temporal lobe syndrome utilizing fronto-temporal ablations. Journal of Comparative Neurology, 1953, 99, 347–375.CrossRefGoogle Scholar
  92. RAISMAN, G. An evaluation of the basic pattern of connections between the limbic system and the hypothalamus. American Journal of Anatomy, 1970, 129, 197–202.CrossRefGoogle Scholar
  93. RALLS, K. Mammalian scent marking. Science, 1971, 171, 443–449.CrossRefGoogle Scholar
  94. ROGER, A., & DONGIER, M. Corrélations électrocliniques chez 50 épileptiques internés. Review of Neurology, 1950, 83, 593–596.Google Scholar
  95. RUSSELL, R. W., SINGER, G., FLANAGAN, F., STONE, M., & RUSSELL, J. W. Quantitative relations in amygdaloid modulation of drinking. Physiology & Behavior, 1968, 3, 871–875.CrossRefGoogle Scholar
  96. SCHREINER, L., & KLING, A. Behavioral changes following rhinen-cephalic injury in cat. Journal of Neurophysiology, 1953, 16, 643–659.Google Scholar
  97. SCHULTZE-WESTRUM, T. G. Social communication by chemical signals in flying phalangers (Petaurus breviceps papuanus). In C. Pfaffmann (Ed.), Olfaction and Taste III, Proceedings of the Third International Symposium. New York: The Rockefeller University Press, 1969. Pp. 269–277.Google Scholar
  98. SCLAFANI, A., BELLUZZI, J. D., & GROSSMAN, S. P. Effects of lesions in the hypothalamus and amygdala on feeding behavior in the rat. Journal of Comparative and Physiological Psychology, 1970, 72, 394–403.CrossRefGoogle Scholar
  99. SEGUNDO, J. P., NAQUET, R., & ARANA, R. Subcortical connections from temporal cortex of monkey. Archives of Neurology and Psychiatry, 1955, 73, 515–524.CrossRefGoogle Scholar
  100. SEM-JACOBSEN, C. W. Depth-electrographic observations in psychotic patients. A system related to emotion and behavior. Acta Psychiatrica et Neurologica Scandinavica, 1959, 34 (Suppl. 136), 412–416.CrossRefGoogle Scholar
  101. SEM-JACOBSEN, C. W., & TORKILDSEN, A. Depth recording and electrical stimulation in the human brain. In E. R. Ramey and D. S. O’Doherty (Eds.), Electrical Studies on the Unanesthetized Brain. New York: Paul B. Hoeber, Inc., Medical Division of Harper and Brothers, 1960. Pp. 275–290.Google Scholar
  102. STEVENS, J. R., MARK, V. H., ERWIN, F., PACHECO, P., & SUEMATSU, K. Deep temporal stimulation in man. Long latency, long lasting psychological changes. Archives of Neurology, 1969, 21, 157–169.CrossRefGoogle Scholar
  103. STEVENSON, J. A. F. Neural control of food and water intake. In W. Haymaker, E. Anderson and W. J. H. Nauta (Eds.), The Hypothalamus. Springfield, Illinois: Charles C. Thomas, 1969. Pp. 524–621.Google Scholar
  104. STOKMAN, C. L. J., & GLUSMAN, M. Amygdaloid modulation of hypothalamic flight in cats. Journal of Comparative and Physiological Psychology, 1970, 71, 365–375.CrossRefGoogle Scholar
  105. SWEET, W. H., ERVIN, F., & MARK, V. H. The relationship of violent behavior to focal cerebral disease. Aggressive Behavior (Excerpta Medica Foundation), 1969. Pp. 336–352.Google Scholar
  106. TODD, J. H., ATEMA, J., & BARDACH, J. E. Chemical communication in social behavior of a fish, the yellow bullhead (Ictalurus natalis). Science, 1967, 158, 672–673.CrossRefGoogle Scholar
  107. VALVERDE, F. Studies on the Piriform Lobe. Cambridge: Harvard University Press, 1965.Google Scholar
  108. VAN HOOFF, J. Facial expressions in higher primates. Symposium, Zoological Society (London), 1962, 8, 97–125.Google Scholar
  109. VIGOUROUX, R., GASTAUT, H., & BADIER, M. Les formes expérimentales de l’épilepsie. Provocation des principales manifestations cliniques de l’épilepsie dite temporale par stimulation des structures rhinencéphaliques chez le chat non anesthésié. Review of Neurology, 1951, 85, 505–508.Google Scholar
  110. WEIL, A. Depressive reactions associated with temporal lobeuncinate seizures. Journal of Nervous and Mental Diseases, 1955, 121, 505–510.CrossRefGoogle Scholar
  111. WEIL, A. Ictal depression and anxiety in temporal lobe disorders. American Journal of Psychology, 1956, 113, 149–157.Google Scholar
  112. WEIL, A. Ictal emotion occurring in temporal lobe dysfunction. Archives of Neurology, 1960, 1, 101–111.Google Scholar
  113. WEISKRANTZ, L. Behavioral changes associated with ablation of amygdaloid complex in monkeys. Journal of Comparative and Physiological Psychology, 1956, 49, 381–391.CrossRefGoogle Scholar
  114. WHITLOCK, D. G., & NAUTA, W. J. H. Subcortical projections from the temporal neocortex in Macaca mulatta. Journal of Comparative Neurology, 1956, 106, 183–212.CrossRefGoogle Scholar
  115. WILLIAMS, D. The structure of emotions reflected in epileptic experiences. Brain, 1956, 79, 29–67.CrossRefGoogle Scholar
  116. WINANS, S. S., & SCALIA, F. Amygdaloid nucleus: new afferent input from the vomeronasal organ. Science, 1970, 170, 330–332.CrossRefGoogle Scholar
  117. WURTZ, R. H., & Olds, J. Amygdaloid stimulation and operant reinforcement in the rat. Journal of Comparative and Physiological Psychology, 1963, 56, 941–949.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • P. Gloor
    • 1
  1. 1.The Montreal Neurological Institute and the Department of Neurology and NeurosurgeryMcGill UniversityMontrealCanada

Personalised recommendations